Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inactivate vaccines faster and more effectively using electron beams

23.03.2017

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, one of the leading research and development partners for electron beam applications, is developing processes and equipment based on this technology for use in medicine, pharmacology, and that conserves natural resources and protects the environment.

Scientists at Fraunhofer FEP in conjunction with other partners within the Fraunhofer Gesellschaft have been conducting research for several years on employing electron-beam technology in medical engineering.


Fraunhofer FEP

Low-energy inactivation of pathogens by means of electron beams (LEEI – Low-Energy Electron Irradiation) can also be used for faster manufacture of more effective vaccines. The foundation for this has been under joint development by the Fraunhofer FEP, IZI, IPA, and IGB Institutes since 2014.

Most vaccinations are based on inactivated vaccines, i.e. vaccines containing viruses that are inhibited from further reproduction. The pathogens can then no longer cause disease in patients. Nevertheless, the immune system still detects them and forms the corresponding antibodies to provide effective protection. Usually the pathogens must be kept in a chemical for several days until they are inactivated.

Formaldehyde, for example, needs approximately two weeks in order to neutralize hepatitis A viruses. This expenditure of time is costly and a disadvantage for industry. In addition, formaldehyde attacks the viruses' proteins that the immune system forms the antibodies to. Formaldehyde thus alters the viruses, thereby reducing the actual effectiveness of the vaccine.

The Fraunhofer consortium is very experience in the development of new technologies that use low-energy electron beams. The results of the project have established that the technology is fundamentally viable for a wide range of viruses, such as influenza and Porcine Reproductive and Respiratory Syndrome virus/PRRSV that triggers this syndrome in swine, as well as other types of pathogens like bacteria and parasites. The genetic substance necessary for the viruses to self-replicate is destroyed by the irradiation.

However, the surface characteristics of the virus important for the immune system response are retained by LEEI, in contrast to chemical inactivation using toxins like formaldehyde. This allows the body to form antibodies having greater specificity for the pathogen, which provides improved protection. As a result, lower vaccination doses might be able to be employed.

Moreover, just a few milliseconds are sufficient to inactivate the viruses or bacteria thanks to this technology, instead of several days or even weeks. An additional advantage of irradiation using low-energy electrons is that it can be carried out in any laboratory.

“A novel, compact, and highly efficient technology has been developed for producing vaccines by utilizing low-energy electron beams that is more effective as well as more economical,” explains Dr. Jessy Schönfelder, head of the medical applications group at Fraunhofer FEP, about her expectations of the development work.

Innovative medical products can likewise be sterilized effectively by low-energy electrons. Artificial knee joints with integrated electronics for monitoring deterioration are conceivable for example, or implants like cardiac valves with novel combinations of materials including biological tissue that need to be sterilized before their insertion.

The scientists of Fraunhofer FEP look forward to new projects with partners from industry in order to help suitably adapt this pioneering technology to further applications. That could involve the development of a product-specific, transportable mini-sterilizer, or of technologies for sterilization of liquid products.

Weitere Informationen:

http://s.fhg.de/D8d

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Further information:
http://www.fep.fraunhofer.de/

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>