Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In cystic fibrosis, lungs feed deadly bacteria

22.08.2019

In cystic fibrosis, Pseudomonas aeruginosa is a much-feared pathogen. The bacterium easily colonizes the lungs of people with cystic fibrosis, leading to chronic infections that are almost impossible to eradicate and are ultimately fatal.

Why does P. aeruginosa, but not other common bacteria, thrive in cystic fibrosis lungs?


P. aeruginosa bacteria (blue) thrive in lungs that produce lots of succinate, a preferred food.

Credit: Sebastián Riquelme, Columbia University Irving Medical Center

A new study from researchers at Columbia University Vagelos College of Physicians and Surgeons suggests the answer has to do with the bacterium's culinary preference for succinate, a byproduct of cellular metabolism, that is abundant in cystic fibrosis lungs.

"Preventing infection by P. aeruginosa could greatly improve the health of people with cystic fibrosis," says Sebastián A. Riquelme, PhD, the study's lead author and a postdoctoral fellow in the Department of Pediatrics. "And it's possible that we could control infection by targeting the bacteria's use of succinate in the lung."

Excess Succinate in CF Lungs

The excess succinate in the lungs of people with cystic fibrosis comes from an interaction between two proteins, CFTR and PTEN. Mutations in the CFTR gene causes cystic fibrosis by preventing the CFTR protein from transporting ions in and out of cells. But the mutations also disrupt CFTR's interactions with PTEN (a discovery made by the Columbia team in 2017).

It is this abnormal PTEN-CFTR interaction, the new study found, that causes lung cells to release an excessive amount of succinate. The succinate fueled growth of P. aeruginosa in the lungs of mice, but had no effect on Staphylococcus aureus, another major pathogen.

More Succinate, More Slime

Not only does P. aeruginosa thrive in a succinate-rich environment, it actively adapts to the abundance of its favored food.

"Succinate-adapted bacteria divert their metabolism into the production of extracellular slime that makes the organisms extremely difficult to eradicate from the lung," says the study's senior author Alice Prince, MD, the John M. Driscoll Jr., MD and Yvonne Driscoll, MD Professor of Pediatrics. "These bacteria are the cause of chronic infection in cystic fibrosis."

The succinate-fed bacteria also suppress the immune response, furthering hampering the body's ability to control the infection.

Targeting Succinate

The new findings--made in mice and in human cells in tissue culture--suggest that it may be possible to treat P. aeruginosa infection by restoring the interaction between PTEN and CFTR, even if CFTR's other functions are impaired.

New drugs for cystic fibrosis, such as the lumacaftor and ivacaftor combination currently available, restore the CFTR-PTEN interaction and may decrease the generation of succinate.

Limiting the accumulation of succinate may also reduce bacterial growth and adaptation. Succinate is mainly produced by immune cells during the inflammatory response, Riquelme says. "We predict that by controlling the exaggerated inflammation observed in the airway, we could reduce succinate and P. aeruginosa infection."

###

The study, "CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection," was published in July in Science Translational Medicine.

Additional authors: Carmen Lozano (Centro de Investigación Biomédica de la Rioja, Microbiología Molecular, Logroño, Spain), Ahmed M. Moustafa (University of Pennsylvania and Children's Hospital of Philadelphia), Kalle Liimatta (Columbia University Irving Medical Center), Kira L. Tomlinson (CUIMC), Clemente J. Britto (Yale University School of Medicine), Sara Khanal (Yale University School of Medicine), Simren K. Gill (CUIMC), Apurva Narechania (American Museum of Natural History, New York, NY), José M. Azcona-Gutiérrez (Hospital San Pedro, Logroño, Spain), Emily DiMango (CUIMC), Yolanda Saénz (Centro de Investigación Biomédica de la Rioja, Microbiología Molecular), and Paul J. Planet (University of Pennsylvania and Children's Hospital of Philadelphia).

The study was supported by the National Institutes of Health (grants R35HL135800, GG011557-26 to Columbia University Irving Institute for Clinical and Translational Research, UL1TR001873, and S10RR027050); the Cystic Fibrosis Foundation (pilot grant PLANET16I and postdoctoral fellowship RIQUEL 17F0/PG008837); an S.B. postdoctoral contract (CD15/00125); an M-AES mobility grant (MV16/00053); Pediatric Infectious Diseases Society (St. Jude Award), Thrasher Research Fund (PG005871), Doris Duke Clinical Scientist Development Award (2012060), and a Louis V. Gerstner Scholar Award.

The authors declare that they have no competing interests.

The Department of Pediatrics at Columbia University Vagelos College of Physicians and Surgeons is a top ranked department nationally, with more than $20 million per year in research funding from the National Institutes of Health, and is the only pediatrics department in New York ranked in the top 25 by US News & World Report.

Lucky Tran | EurekAlert!
Further information:
https://www.cuimc.columbia.edu/news/cystic-fibrosis-lungs-feed-deadly-bacteria

Further reports about: CFTR Metabolism PTEN aeruginosa bacteria cystic fibrosis fibrosis lungs

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>