Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving paleotemperature reconstruction: Swiss lakes as a model system

09.10.2018

For years, scientists have been trying to determine the climate of the past in order to make better predictions about future climate conditions. Now, there has been a breakthrough in the methodology of climate reconstruction based on microbial molecular fossils. Researchers under the direction of the University of Basel analyzed sediment samples collected from more than 30 Swiss lakes. Their findings can be applied to lakes worldwide, as the scientists report in PNAS.

The remains of bacteria found in lake sediments are important for the reconstruction of past environmental conditions. Particularly, cell fragments known as membrane lipids allow climate geologists to infer historic temperatures. A team led by Professor Moritz Lehmann and Dr. Helge Niemann from the Department of Environmental Sciences at the University of Basel have now investigated a very specific class of climate-sensitive lipids in 36 alpine lakes.


The researchers filtered hundreds of liters of water from Lake Lugano at depths of up to 275 m using a battery-operated in-situ pump

University of Basel, Department of Environmental Sciences

Their application in climate reconstruction has long been known, but the biological sources of the lipids remained unclear. This severely complicated their application as a temperature indicator.

“We initially assumed that these compounds were primarily produced by bacteria in soil and were washed into the lakes by rivers. But increasing evidence suggested that they are also formed within lake water itself,” explains Lehmann. Therefore, the aim of the research project was to characterize the ecology of the unknown bacteria that produce these lipids.

Link to methane

At the heart of the investigations was Lake Lugano in Switzerland, which offers an outstanding model system due to its strong stratification and great depth.

“Using stable isotope analysis, we were able to show that these bacterial lipids are dominantly formed in the cold, deep waters of the lake – where oxygen is depleted and large amounts of the greenhouse gas methane are present,” says Dr. Yuki Weber, lead author of the study. The scientists were then able to confirm their findings from Lake Lugano by similar measurements from 35 other alpine lakes.

In addition to lipid analysis, the researchers also applied molecular biological methods, which allowed them to capture the bacterial diversity at various water depths in Lake Lugano. For the first time, the research team was able to show that these climate-sensitive lipids are produced under widely different environmental conditions, by distinct groups of microbes that reside at different water depths.

Refining the paleothermometer

Despite the numerous environmental factors that may influence the composition of these lipids, the researchers were able to determine the conditions under which the lipid thermometer still yields reliable temperature estimates. “By means of stable carbon isotope analysis, we can now determine whether the lipids were formed in soil or lake water. We are therefore confident that our study will make an important contribution to the improvement of paleoclimate data worldwide,” concludes Weber.

The study was carried out in cooperation with the Royal Netherlands Institute for Sea Research, ETH Zurich, University of Applied Sciences and Arts of Southern Switzerland, and Eawag.

Wissenschaftliche Ansprechpartner:

Professor Moritz Lehmann, University of Basel, Department of Environmental Sciences, Tel. +41 61 207 36 16, email: moritz.lehmann@unibas.ch

Originalpublikation:

Yuki Weber, Jaap S. Sinninghe Damsté, Jakob Zopfi, Cindy De Jonge, Adrian Gili, Carsten J. Schubert, Fabio Lepori, Moritz F. Lehmann, Helge Niemann
Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes
PNAS (2018), doi: 10.1073/pnas.1805186115

Iris Mickein | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection
31.03.2020 | Forschungsverbund Berlin

nachricht A 'cardiac patch with bioink' developed to repair heart
31.03.2020 | Pohang University of Science & Technology (POSTECH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>