Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved reaction data heat up the biofuels harvest

11.08.2008
High food prices, concern over dwindling supplies of fossil fuels and the desire for clean, renewable energy have led many to seek ways to make ethanol out of cellulosic sources such as wood, hay and switchgrass.

But today's processes are notoriously inefficient. In a new paper,* researchers at the National Institute of Standards and Technology (NIST) have detailed some of the most fundamental processes involved in extracting sugars from biomass, the first step in producing ethanol by fermentation. Their findings should help engineers to improve their process designs in order to extract the maximum amount of fuel from a given measure of biomass.

Most of the ethanol produced in the United States is created by fermenting the sugars and starch found in corn. The capability to convert inedible plants and agricultural waste into usable sources for ethanol production will help to supplement alternatives to fossil fuels while reducing the diversion of food crops to energy uses.

Glucose can be extracted from two substances found in most plants: cellulose, the long molecule chains that comprise the cell walls of green plants, and its flimsier cell-wall counterpart, hemicellulose. The extracted glucose is then easily converted by fermentation to ethanol. NIST researchers, in collaboration with the National Renewable Energy Laboratory in Golden, Colo., have defined the theoretical limits of reactions important to cleaving, or breaking apart, cellulose and hemicellulose to produce glucose. They also determined that the energy needed to rupture these key bonds is a constant value for each molecular bond that is broken during the cleavage reactions.

According to Yadu Tewari, Brian Lang and Robert Goldberg, chemists at NIST and co-authors of the paper, cellulose and hemicellulose both present problems to would-be ethanol producers.

"Cellulose and hemicellulose are recalcitrant," Goldberg says. "They don't want to break down. It takes a long time for wood to rot. It even takes termites a long time to break wood down, and they're pretty good at it. Ethanol producers face the same problem. Because of the way these molecules are arranged, it's difficult to get access to the reactive centers in wood and other biomass. What we have done is to study some of the most basic reactions associated with the breakdown of these materials."

With enzymes to speed the reactions, the team used calorimetry and chromatography to measure the thermodynamic property values of several reactions associated with the breakdown of cellulosic and hemicellulosic substances. Because process design and bioengineering benefit from the availability of these values, the data obtained in this investigation represent a "small but significant step toward maximizing the efficiency of biomass utilization," Tewari says.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov
http://dx.doi.org/10.1016/j.jct.2008.05.015

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
26.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>