Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method for isotope enrichment could secure a vital global commodity

30.06.2014

Researchers at The University of Texas at Austin have devised a new method for enriching a group of the world's most expensive chemical commodities, stable isotopes, which are vital to medical imaging and nuclear power, as reported this week in the journal Nature Physics. For many isotopes, the new method is cheaper than existing methods. For others, it is more environmentally friendly.


This is a still frame from an artist's animated rendering of the MAGIS Device (magnetically activated and guided isotope separation). To begin the MAGIS process, unpurified ore is vaporized and enters an optical pumping region where a one-watt laser (red beam) tuned to a specific wavelength magnetizes only the particles of the desired isotope so that they are repelled by a magnetic field. The magnetized and unmagnetized particles enter a curved tunnel lined with permanent magnets, called a wave guide. The particles must follow the curve to make it to the collector at the end, but can only do so if repelled by the magnetic field. Since only the particles of one isotope are magnetized (blue dots), only those particles make the trip and end up in the collector. The MAGIS method was developed by Mark Raizen, Tom Mazur and Bruce Klappauf. The full animation can be viewed at https://www.youtube.com/watch?v=zIRi-7AxFAM.

Credit: ©Marianna Grenadier, College of Natural Sciences, The University of Texas at Austin.

A less expensive, domestic source of stable isotopes could ensure continuation of current applications while opening up opportunities for new medical therapies and fundamental scientific research.

Chemical elements often exist in nature as a blend of different variants called isotopes. To be useful in most applications, a single isotope has to be enriched, or separated out from the rest.

A combination of factors has created a looming shortage of some of the world's most expensive but useful stable isotopes.

Last year, the Government Accountability Office released a report warning that there may soon be a shortage of lithium-7, a critical component of many nuclear power reactors. Production of lithium-7 was banned in the U.S. because of environmental concerns, and it's unclear whether the current sources, in China and Russia, will continue meeting global demand.

One of the major sources of molybdenum-99, essential for medical imaging in tens of millions of heart, kidney and breast procedures each year, is an aging nuclear reactor in Canada that's expected to cease operations in 2016. Other valuable isotopes are produced by Cold War era machines known as calutrons operating in Russia. Their extreme age, high operating costs and regional concentration further threaten global supply.

"Isotopes are among the most expensive commodities on Earth," says Mark Raizen, professor of physics in The University of Texas at Austin's College of Natural Sciences and author on the study. "One ounce of a stable isotope that needs the calutron to separate it can run around $3 million. That's roughly 2,000 times the price of gold. And that has held back certain medical therapies."

Unlike the calutron, which requires huge amounts of energy to maintain a magnetic field with electromagnets, the new method for enriching stable isotopes, called MAGIS (magnetically activated and guided isotope separation), needs little energy due to its use of low-powered lasers and permanent magnets. It also has less potential for environmental effects than the chemical process used in producing lithium-7, which has been linked to mercury contamination.

View an animation of the MAGIS device in action and read more about how it works here: https://www.youtube.com/watch?v=zIRi-7AxFAM.

Nuclear medicine in particular could benefit from the new method, the researchers say. Many stable isotopes are precursors to the short-lived radioisotopes used in medical imaging, cancer therapies and nutritional diagnostics.

The new method also has the potential to enhance our national security. The researchers used the method to enrich lithium-7, crucial to the operation of most nuclear reactors. The U.S. depends on the supply of lithium-7 from Russia and China, and a disruption could cause the shutdown of reactors. Other isotopes can be used to detect dangerous nuclear materials arriving at U.S. ports.

Raizen's co-authors on the paper are Tom Mazur, a Ph.D. student at the university; and Bruce Klappauf, a software developer at Enthought and a former senior research scientist at UT Austin.

Now, Raizen's top goal is getting this technology out of the lab and into the world. The MAGIS invention has been issued a U.S. patent, which is owned by The University of Texas at Austin, with Raizen and Klappauf as inventors.

Raizen plans to create a nonprofit foundation to license the technology.

"I believe this is world-changing in a way that is unique among all the projects that I have done. And I do feel passionately about it," said Raizen. "There are many potential uses of isotopes that we don't even know yet. But they've been held back because the price has been so high, or it's been unavailable. That will be one of the missions of the foundation — to explore and develop isotopes to benefit humanity."

Some critics have raised concerns about the potential for terrorists or rogue states to use MAGIS to enrich uranium for nuclear weapons. Raizen believes these concerns are unfounded given uranium's unique chemical characteristics. Read an online debate between Raizen and Francis Slakey, a physicist and associate director of public affairs for the American Physical Society here: http://www.aps.org/publications/apsnews/201301/backpage.cfm.

###

This research was funded by The University of Texas at Austin.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Dr. Raizen has submitted required financial disclosure forms with the university. He has received research funding for other projects from the Texas Higher Education Coordinating Board, the Welch Foundation, the National Science Foundation and the U.S. Department of Energy. Klappauf and Mazur have no financial ties to the isotope industry or isotope consumers.

More Info

For a global map showing where molybdenum-99 (Mo-99) is enriched, the steps to produce it and the challenges to the global supply, go to: http://www.mallinckrodt.com/Nuclear_Imaging/Global_Mo-99_Supply_Chain.aspx

Steve Franklin | Eurek Alert!

Further reports about: Earth Foundation Nuclear isotope isotopes molybdenum-99 stable isotopes therapies

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>