Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important new model shows how proteins find the right DNA sequences

17.03.2009
Researchers at Uppsala University and Harvard University have collaboratively developed a new theoretical model to explain how proteins can rapidly find specific DNA sequences, even though there are many obstacles in the way on the chromosomes. The findings are being published today in the scientific journal Nature Physics.

In living cells, DNA-binding proteins regulate the activity of various genes so that different cells carry out the right tasks at the right time. For this to work, the DNA-binding proteins need to find the right DNA site sufficiently quickly.

The research team behind the new study has previously succeeded in determining that it takes only a few minutes for an individual protein molecule to look through the millions of nearly identical binding alternatives and find the right place to bind.

This is nevertheless slower than what is predicted by the established theoretical model for how DNA-binding proteins find their way to the proper place by alternating between diffusing in the cell cytoplasm and along DNA strands.

"By also taking into consideration the fact that there are many obstacles in the way when proteins are to diffuse along DNA strands, we can now calculate more exactly how long it takes them to find their way," says Johan Elf, associate professor of molecular biotechnology at the Center for Bioinformatics.

Besides offering a more precise prediction regarding the time needed to find the right site on DNA, the new theoretical model explains why there is an optimal total concentration of DNA-binding proteins. If there were more, it would simply be impossible for them to find a binding place in a reasonable time, since the proteins would be in each other's way. If there were fewer it would go slower as well, since not enough proteins would be searching. Finally, the new model provides an explanation why so many DNA-binding proteins also bind auxiliary binding sites close to the regulatory site, thus forming DNA loops. It turns out that this can shorten the time to find the right sites.

"This more detailed understanding of gene regulation is important, since it can ultimately provide a better understanding of diseases that occur as a result of problems in the control functions of cells, such as in cancer" says Johan Elf.

Johan Elf | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>