Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important breakthrough at the IRCM associated with osteoporosis

05.10.2011
Researchers identify a new gene that could help identify individuals predisposed to developing the disease

Researchers at the Institut de recherches cliniques de Montréal (IRCM), directed by Dr. Jean Vacher, identified a new gene that modulates bone mass and that could become a risk factor for developing osteoporosis. This scientific breakthrough will be published tomorrow in the scientific journal Cell Metabolism.

Osteoporosis is a "silent" genetic disease characterized by low bone mineral density and deterioration of bone tissue, which leads to increased bone fragility and risk of fracture. In all cases, the disease is caused by an imbalance between the formation and resorption of bone tissue.

"The overall objective of our research is to understand the molecular and cellular mechanisms that determine the balance between bone formation and resorption (breakdown)," explains Dr. Vacher, Director of the Cellular Interactions and Development research unit at the IRCM. "Osteoblasts are responsible for making bones and work in synergy with osteoclasts, which reshape the bone. To gain insight into these complex mechanisms, we are studying the role of new genes that influence osteoclasts and osteoblasts."

The team of researchers recently isolated a gene that modulates osteoclasts. They found, in mice, that a loss of this gene's function leads to a significant increase in the number of osteoclasts, thereby generating an even higher level of bone resorption.

"We identified this gene as a novel modulator of bone mineral density in mice and humans," adds Dr. Vacher. "More importantly, we showed that the human gene could represent a new susceptibility factor for osteoporosis. Hence, this discovery will help identify individuals with a greater predisposition to the disease who could benefit from preventive measures."

According to Osteoporosis Canada, as many as two million Canadians suffer from osteoporosis. One in four women over the age of 50 has osteoporosis, and so does one in eight men over the same age. In addition, 80 per cent of hip fractures are related to the disease. These result in death in up to 20 per cent of cases, and disability in 50 per cent of those who survive.

Mathieu Ferron, graduate student from Dr. Vacher's laboratory, is the article's first author. This research project was conducted in collaboration with scientists at Université Laval in Québec and Washington University School of Medicine in Saint Louis.

Research carried out at the IRCM was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). For more information on this discovery, please refer to the article summary published in Cell Metabolism.

About Dr. Jean Vacher

Jean Vacher obtained his Doctor of Science in biochemistry from the Université de Paris VII in France. He is Full IRCM Research Professor and Director of the Cellular Interactions and Development research unit. Dr. Vacher is a full research professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also associate member of the Department of Medicine (Division of Experimental Medicine) at McGill University.

About the Institut de recherches cliniques de Montréal (IRCM)

Founded in 1967, the IRCM (www.ircm.qc.ca) is currently comprised of 35 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>