Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could the immune system help recovery from stroke?

13.03.2012
Stroke and other diseases and injuries to the brain are often followed by inflammation, caused by a reaction of the body’s immune system.

This reaction has been seen as something that must be combated, but perhaps the immune system could in fact help with recovery following a stroke. A major new EU project, led by Lund University in Sweden and the Weizmann Institute in Israel, is going to study this question.

Stroke is a major public health problem, with 700 000 new cases in the EU and 30 000 new cases in Sweden each year. The EU is now investing EUR 12 million in the project TargetBraIn. The goal of the project is to gain a better understanding of the role of the immune system in stroke.

The immune system protects the body when its tissues are damaged for whatever reason. The cells of the immune system often produce inflammation, which has some negative effects, but which in time helps the original damage to heal.

Stroke is most commonly caused by a cerebral infarction (a blood clot in the brain), which starves the brain of oxygen. It is the damage caused by the lack of oxygen which activates the immune system and leads to inflammation. Until now, this has been seen as a wholly undesirable reaction. To emphasise the positive aspects of the immune system’s reaction is therefore something of a paradigm shift in the field. Professor Michal Schwartz and her research group in Israel have pioneered the study of the positive role of the immune system in repairing damaged nerve cells.

Professor Zaal Kokaia, head of the Stem Cell Centre at Lund University, has long worked with stem cell therapy for brain injuries. He led StemStroke, an EU project which researched the possibility of creating new nerve cells after a stroke through transplants or by encouraging the brain to form new cells. Zaal Kokaia and Michal Schwartz are now coordinator and deputy coordinator respectively of TargetBraIn (an acronym which stands for “Targeting Brain Inflammation for Improved Functional Recovery in Acute Neurodegenerative Disorders”).

“Within TargetBraIn we want to reinforce the positive effects of inflammation and reduce its negative effects. This could be achieved either by trying to change the immune system’s reactions or through stem cell therapy, or both! A combination of the two methods may produce the best results”, says Zaal Kokaia.

The research is still at the experimental stage, and the road to general application on patients will be long. However, as the population of Europe ages, stroke is becoming an increasingly costly disease, hence the EU investment in the field.

For more information, please contact Zaal Kokaia, +46 46 222 0276, +46 705 365917 or zaal.kokaia@med.lu.se.

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>