Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-in-One Imaging Agents

15.03.2012
MRI systems with high relaxivities and long luminescence lifetimes also suitable for time-gated fluorescence imaging

Accurate visualization of living systems is key to the correct diagnosis and effective treatment of many diseases, as well as an improved understanding of biological processes. Magnetic resonance imaging (MRI) is a popular non-invasive visualization technique, which requires a possibly toxic contrast agent in the target tissue.

Researchers have recently sought to combine MRI with confocal imaging, one of the most widely used imaging techniques in biology. For this combination to be effective, multimodal imaging agents that can function as MRI contrast agents and luminescent probes are required. Valérie C. Pierre and co-workers at the University of Minnesota report on improved magnetoluminescent systems in the European Journal of Inorganic Chemistry.

Such magnetoluminescent imaging agents consist of three components: a luminescent probe, a contrast agent, and a linker to combine the two. The use of lanthanide complexes as luminescent probes has the advantage of affording long luminescence lifetimes, which makes the system suitable for use in time-gated luminescence spectroscopy. Enhancing the absorption of the lanthanide terbium with a phenanthridine antenna provided an ideal luminescent probe. Magnetic iron oxide nanoparticles, known for their superior longitudinal and especially transverse relaxivities, were employed as the contrast agent, and a polyethylene glycol (PEG) linker was used to coat the luminescent probes onto the magnetic nanoparticles.

In addition to a precise luminescent probe and a contrast agent with excellent relaxivities, these systems are not cytotoxic, as, for example, systems held together by silica matrices. Moreover, the PEG coating is not as thick and is more water-permeable, which results in considerably improved cellular uptake and higher relaxivity.

About the Author
The research group of Professor Valérie C. Pierre at the Department of Chemistry, University of Minnesota, focuses on the role of metal ions in biological systems, especially in the design of biological and medical probes by using the techniques of synthetic and analytical chemistry.
Author: Valérie C. Pierre, University of Minnesota, Minneapolis (USA), http://www.chem.umn.edu/directory/faculty.lasso?serial=2843
Title: Magnetoluminescent Agents for Dual MRI and Time-Gated Fluorescence Imaging

European Journal of Inorganic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejic.201200045

Valérie C. Pierre | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.umn.edu/directory/faculty.lasso?serial=2843

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>