Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image or Mirror Image?

07.03.2012
Chiral recognition by femtosecond laser

It is not always easy to distinguish between images and mirror images of molecules, but this knowledge is important when one image of a molecule is a drug and the mirror image is toxic. One new approach to this may be chiral recognition in the gas phase.


This involves using synchrotron radiation (highly energetic photons from a particle accelerator) to eject electrons from the molecules and analyzing their trajectories. In the journal Angewandte Chemie, German researchers have now demonstrated that such experiments also work with a compact laser system.

The trick is to replace the individual high-energy photon with three laser photons that excite the molecule through intermediate levels until it releases an electron (this method is known as REMPI, Resonance-Enhanced Multi-Photon Ionization). “It is thus possible to eject electrons with less energetic but more intense light,” explains Thomas Baumert of the University of Kassel.

For the measurements, the light must be circularly polarized. What does this mean? “Ordinary” light consists of waves that oscillate in all spatial directions perpendicular to their direction of travel. If light is linearly polarized, the light waves oscillate exclusively in one plane. When light is circularly polarized, the light wave oscillates in a helical form, because its amplitude describes a circle around the axis of travel – either to the right or the left.

Molecules in the gas phase are randomly oriented and thus encounter the laser light from all possible angles; the ejected electrons also fly off in every possible direction as they leave the molecule. By using both a special configuration for measurement and special calculation processes, the team is able to determine the distribution of the angles of the electrons’ flight paths. In the case of linearly polarized light, the distribution is symmetrical.

“However, when the electrons are ejected by circularly polarized light, we find a distinct asymmetry to the angles at which the free electrons are found in relation to the laser beam,” reports Baumert. “This asymmetry is inverted if left circularly polarized light is used instead of right, an effect known as photoelectron circular dichroism. We observe the same effect when we keep the circular polarization the same but change from the “right handed” to the “left handed” structure of the chiral molecule being observed.”

The researchers were able to demonstrate this with the chiral compounds camphor and fenchone.

“This circular dichroism effect has previously only been observed with synchrotron radiation. In contrast, our procedure uses a compact laser system, so that this method is not limited to basic laboratory research but, because of the magnitude of the observed effects, may also find its way into analysis,” according to Baumert.

About the Author
Dr. Thomas Baumert has been Professor of Experimental Physics at the University of Kassel for over a decade. His research interests include femtosecond spectroscopy and ultrasound control of matter by means of tailored light fields.
Author: Thomas Baumert, Universität Kassel (Germany), http://www.physik.uni-kassel.de/de/484.html
Title: Circular Dichroism in the Photoelectron Angular Distributions of Camphor and Fenchone from Multiphoton Ionization with Femtosecond Laser Pulses

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201109035

Thomas Baumert | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.physik.uni-kassel.de/de/484.html

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>