Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illuminating the dark zone

30.04.2015

UCSB scientists make new discoveries about a specific protein and its effects on the final step of cell division

The human body is a cross between a factory and a construction zone -- at least on the cellular level. Certain proteins act as project managers, which direct a wide variety of processes and determine the fate of the cell as a whole.


In addition to its location in the cell nucleus, WDR5-EGFP was also found in central dark zone of the midbody.

Credit: UCSB

One group of proteins called the WD-repeat (WDR) family helps a cell choose which of the thousands of possible gene products it should manufacture. These WDR proteins fold into a three-dimensional structure resembling a doughnut -- an unusual shape that allows WDR proteins to act as stable platforms on which large protein complexes can assemble or disassemble.

A new study conducted by scientists at UC Santa Barbara reveals a novel function for WDR5, a protein known for its critical role in gene expression whereby information encoded in genes is converted into products like RNA (ribonucleic acid) and protein. In cells, WDR5 is a subunit of a five-protein complex. Mutations in members of this complex can result in childhood leukemia and other disorders affecting numerous organ systems in the body. The UCSB team worked with WDR5 in cultured human cell lines. The results of the study appear in the Journal of Biological Chemistry.

"We found that when two cells divide, WDR5 is localized to a very interesting cellular structure called the midbody," said lead author Jeff Bailey, a graduate student in UCSB's Department of Molecular, Cellular and Developmental Biology (MCDB). "In the past, although associated with cell division, the midbody was considered 'junk,' but that has changed in the last decade. Now the midbody is believed to be important during stem cell differentiation."

When a stem cell divides to produce a differentiated type of cell like a skin cell or a neuron, stem cells retain the midbody while differentiated cells do not. "This suggests that the midbody has important functions," Bailey explained. "Also, when the midbody isn't cut correctly, the cells can re-fuse, creating one cell with two nuclei. This is thought to be part of what happens when a tumor forms."

Conducted in the laboratory of MCDB associate professor Zach Ma, this new work involved the fusion of WDR5 to a green fluorescent protein molecule called EGFP. Although dense material within the midbody thwarts conventional methods of protein detection, the fluorescence of EGFP tethered to WDR5 revealed its location during cell division, or cytokinesis.

The researchers were surprised to find WDR5 in a part of the midbody called the dark zone. "It was very unexpected," Bailey said. "The presence of WDR5 outside the cell nucleus gave us a clue about its function, which we tested," Ma added.

The scientists found that not only did the protein localize in the midbody, it also contributed to abscission, the separation of two daughter cells at the completion of cytokinesis. In addition, WDR5 promotes the disassembly of midbody microtubules, the major structural components of the midbody that must be cleared before abscission can occur.

When the investigators artificially reduced the amount of WDR5 in cells, cytokinesis was substantially delayed and more cells failed to divide properly. "When histology is performed on a tumor, pathologists look for cells that have two nuclei," Bailey explained. "This can indicate that cells within the tumor are failing to properly finish cytokinesis."

Because a single protein can perform several distinct functions according to its location within a cell, it can be challenging to study one function without disrupting the others. Guided by previous structural studies, however, the UCSB team identified surfaces of the WDR5 "doughnut" that may be specific to its role in cell division.

"We have shed some light on the role of WDR5 in cytokinesis," Ma said, "which may in turn help us better understand the diverse array of physiological as well as pathological events related to malfunction of these proteins in the process of cell division."

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>