Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois–UC Berkeley discovery turns seaweed into biofuel in half the time

30.08.2011
University of Illinois scientists have engineered a new strain of yeast that converts seaweed into biofuel in half the time it took just months ago. That's a process that's important outside the Corn Belt, said Yong-Su Jin, a University of Illinois assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

"The key is the strain's ability to ferment cellobiose and galactose simultaneously, which makes the process much more efficient," Jin said.

Red seaweed, hydrolyzed for its fermentable sugars, yields glucose and galactose. But yeast prefers glucose and won't consume galactose until glucose is gone, which adds considerable time to the process, he said.

The new procedure hydrolyzes cellulose into cellobiose, a dimeric form of glucose, then exploits a newly engineered strain of Saccharomyces cerevisiae capable of fermenting cellobiose and galactose simultaneously.

The team introduced a new sugar transporter and enzyme that breaks down cellobiose at the intracellular level. The result is a yeast that consumes cellobiose and galactose in equal amounts at the same time, cutting the production time of biofuel from marine biomass in half, he said.

The research, performed with project funding from the Energy Biosciences Institute, included team members Suk-Jin Ha, Qiaosi Wei, and Soo Rin Kim of the University of Illinois, Urbana-Champaign, and Jonathan M. Galazka and Jamie Cate of the University of California, Berkeley.

Jin compared the previous process to a person taking first a bite of a cheeseburger, then a bite of pickle. The process that uses the new strain puts the pickle in the cheeseburger sandwich so both foods are consumed at the same time.

Co-fermenting the two sugars also makes for a healthier yeast cell, he said.

"It's a faster, superior process. Our view is that this discovery greatly enhances the economic viability of marine biofuels and gives us a better product," he added.

Is seaweed a viable biofuel? Jin and his colleagues are using a red variety (Gelidium amansii) that is abundant on the coastlines of Southeast Asia. In island or peninsular nations that don't have room to grow other biofuel crops, using seaweed as a source of biofuels just makes good sense, he noted.

But biofuels made from marine biomass also have some advantages over fuels made from other biomass crops, he said.

"Producers of terrestrial biofuels have had difficulty breaking down recalcitrant fibers and extracting fermentable sugars. The harsh pretreatment processes used to release the sugars also result in toxic byproducts, inhibiting subsequent microbial fermentation," he said.

Jin cited two other reasons for use of seaweed biofuels. Production yields of marine plant biomass per unit area are much higher than those of terrestrial biomass. And rate of carbon dioxide fixation is much higher in marine biomass, making it an appealing option for sequestration and recycling of carbon dioxide.

The study appears in Applied and Environmental Microbiology and is available online at www://aem.asm.org/cgi/content/full/77/16/5822.

The Energy Biosciences Institute is a public-private collaboration in which bioscience and biological techniques are being applied to help solve the global energy challenge. The partnership, funded with $500 million for 10 years from the energy company BP, includes researchers from UC Berkeley; the University of Illinois, and the Lawrence Berkeley National Laboratory. Details about the EBI can be found on the website www.energybiosciencesinstitute.org.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu
http://www.energybiosciencesinstitute.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>