Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois scientists link dietary DHA to male fertility

10.01.2012
Who knew that male fertility depends on sperm-cell architecture? A University of Illinois study reports that a certain omega-3 fatty acid is necessary to construct the arch that turns a round, immature sperm cell into a pointy-headed super swimmer with an extra long tail.

"Normal sperm cells contain an arc-like structure called the acrosome that is critical in fertilization because it houses, organizes, and concentrates a variety of enzymes that sperm use to penetrate an egg," said Manabu Nakamura, a U of I associate professor of biochemical and molecular nutrition.

The study shows for the first time that docosahexaenoic acid (DHA) is essential in fusing the building blocks of the acrosome together. "Without DHA, this vital structure doesn't form and sperm cells don't work," said Timothy Abbott, a doctoral student who co-authored the study.

Men concerned about their fertility may wonder what foods contain DHA. Marine fish, such as salmon or tuna, are excellent sources of this omega-3 fatty acid.

The scientists became intrigued with DHA's role in creating healthy sperm when they experimented with "knockout" mice that lack a gene essential to its synthesis. "We looked at sperm count, shape, and motility, and tested the breeding success rate. The male mice that lacked DHA were basically infertile," Nakamura said.

But when DHA was introduced into the mice's diet, fertility was completely restored. "It was very striking. When we fed the mice DHA, all these abnormalities were prevented," he said.

The scientists then used confocal laser scanning (3D) microscopy to look at thin slices of tissue in progressive stages of a sperm cell's development. By labeling enzymes with fluorescence, they could track their location in a cell.

"We could see that the acrosome is constructed when small vesicles containing enzymes fuse together in an arc. But that fusion doesn't happen without DHA," he said.

In the absence of DHA, the vesicles are formed but they don't come together to make the arch that is so important in sperm cell structure, he noted.

Nakamura finds the role this omega-3 fatty acid plays in membrane fusion particularly exciting. Because DHA is abundant in specific tissues, including the brain and the retina as well as the testes, the scientists believe their research findings could also impact research relating to brain function and vision.

"It's logical to hypothesize that DHA is involved in vesicle fusion elsewhere in the body, and because the brain contains so much of it, we wonder if deficiencies could play a role, for example, in the development of dementia. Any communication between neurons in the brain involves vesicle fusion," he noted.

The Illinois scientists will continue to study sperm; meanwhile, Nakamura has sent some of his DHA-deficient knockout mice to other laboratories where scientists are studying DHA function in the brain and the retina.

The study was published in a recent issue of Biology of Reproduction. Co-authors are Manuel Roqueta-Rivera, Timothy L. Abbott, Mayandi Sivaguru, and Rex A. Hess, all of the U of I. The work was supported in part by a CONACyT Mexico fellowship award.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>