Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If solubilty is the problem - Mechanochemistry is the solution

25.05.2018

Chemists from TU Dresden synthesize supersized nanographenes with ball milling

Chemist Dr. Lars Borchardt and his team at TU Dresden recently achieved a huge breakthrough in the synthesis of nanographenes. Because of their unique electrical, thermal and mechanical characteristics, the carbon modification graphene and its little brothers the nanographenes are known as a very promising material for applications in electronics, sensor technology and energy storage.


Mechanical energy provided by the collision of milling ball in planetary ball mills allows to synthesize nanographene structures under environmentally friendly and solvent-free reaction conditions.

Sven Grätz

However, since the synthesis of nanographenes and graphene nanoribbons is still rather expensive and environmentally unsustainable, there are only few industrial applications. Dr. Borchardt’s innovative method of a mechanochemical synthesis of nanographenes has certainly paved the way for a safer, simpler and more sustainable route for the synthesis of alternative electronic and solar energy materials.

Ball mills instead of solvents – this is the starting point of the research of Dr. Lars Borchardt and his junior research group „Mechanocarb“ at the Faculty of Chemistry and Food Chemistry at TU Dresden since 2015. The group is funded by the Federal Ministry of Education and Reserach (BMBF) and is a project of the funding initiative „Materialforschung für die Energiewende“.

Their joint aim is to establish mechanochemistry as a resource-, energy- and time-efficient synthesis method towards carbon-based electrode materials. PhD student Sven Grätz recently succeeded once more in proving that they are on the right track: the results of his dissertation on the mechanochemical Scholl reaction were published in the renowned online journal Chemical Communications.

It may seem paradoxal to imagine that the destructive forces of a ball mill can help creating complex molecules. However, Borchardt and his team have done just that. Highly aromatic molecular systems (highly aromatic in chemistry means systems with a high number of conjugated bonds that are very stable) such as nanographenes are known for their poor solubility. Therefore, they are difficult to synthesize in traditional chemical methods, which require a solvent.

The Borchardt group exclusively works with the intense mechanical forces of ball mills. The huge forces in the mills initiate a chemical reaction in which a hexaphenylbenzene precursor is converted into a completly aromatic system. Not only does this method represent a much simpler, safer and more sustainable alternative to conventional chemical syntheses, it also opens up new ways: „We can also broaden the feasibility of this famous reaction towards molecules that are insoluble, “ explains Borchardt.

The TUD scientists managed to synthesize the triangular shaped C60 as well as C222 benchmark nanographenes within very short time and with comparably little effort. Now they continue their mechanochemical research with the aim of producing even larger molecules such as graphene nanoribbons which are adaptable for application. The recent findings of the Borchardt group will certainly contribute new aspects to the search for new electronic and solar energy material and also to resolving some of the hindrances of chemical synthesis by eliminating solvents.

Original publication:
S Grätz et al, Chem. Commun., 2018, DOI: 10.1039/c8cc01993b (This article is free to access until 12 June 2018.)

Media inquiries:
Dr. Lars Borchardt
Tel.: 0351 46334960
E-Mail: lars.borchardt@tu-dresden.de

Weitere Informationen:

http://www.borchardt-group.com

Kim-Astrid Magister | Technische Universität Dresden
Further information:
http://www.tu-dresden.de

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>