Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If Machines Could Smell ...

19.07.2019

Fraunhofer IPA drives Biological Transformation with an innovative platform

What, if robots could smell? Sniffing explosives at the airport, diagnosing diseases based on a patient’s breath, locating gas leaks and much more?


To determine the right odour receptor for a specific application,several thousand receptors and their combination must be screened. This is only economical when automated.

Fraunhofer IPA

As part of its lighthouse topic “Biological Transformation“, the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart is now increasingly connecting biological and technical systems. A new platform technology is developed to automatically manufacture cell-based sensors and make them economically usable.

For the economical use of biological sensors, Fraunhofer IPA is developing a technology that automatically produces cell-based biosensors. Such sensors could then give machines, for example, a sense of smell. The platform is initially validated on a product of the Californian start-up Koniku.

However, it will later also be used for other applications. IPA project manager Martin Thoma sums up the innovation: “We are basically developing a generic tool that will enable cell-based biological sensors for industrial use in the medium term.“

Biology and technology merge.The project is supported by the Baden-Württemberg Ministry of Economic Affairs, among others. With biointelligent products and the associated production technologies, new value creation potentials can emerge for the innovation area and industrial location of Baden-Württemberg.

The project aims to realize them for the country’s economy.In order to enable the targeted development of an economically usable product, Fraunhofer IPA will develop a screening process for receptor selection and reliable automated production of so-called transfected cells, i.e. cells in which foreign DNA or RNA is integrated.

The US-company Koniku has been cultivating such cells for several years now. Olfactory receptors are introduced on small autonomous optical selection units by Koniku.

The cells can be kept alive and are functional for an extended period of time to detect tiny particles from the environment. However, there are still many unanswered questions in this field of research. To determine the right olfactory receptor for a specific application, several thousand receptors and their combination must be screened.

For this process to become eco-nomical, a platform is needed that makes it possible to automatically modify cells, i.e. transfect them, and then examine them for their specific reaction to smells and tastes. With such a transfection and screening platform, it would be possible to modify the cells very quickly for different olfactory stimuli and thus to open up other areas of application, such as medical diagnostics.

“I am particularly excited about being able to deploy the Konikore in every home in a few years,“ says Osh Agabi. Founder and CEO of Koniku Inc. “A solution which can help people detect or screen disease at the earliest stages, naturally some hurdles remain to accomplish this goal nevertheless, step by step we are moving closer to this reality. The partnership with Fraunhofer IPA is another key milestone laid in this journey.“

Wissenschaftliche Ansprechpartner:

Dipl.-Phys. Martin Thoma | Phone +49 711 970-1336 | martin.thoma@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering
and Automation IPA | www.ipa.fraunhofer.de

Press Communication
Dr. Birgit Spaeth | Phone +49 711 970-1810 | birgit.spaeth@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering and
Automation IPA | www.ipa.fraunhofer.de

Weitere Informationen:

https://www.ipa.fraunhofer.de/de/presse/presseinformationen/wenn-maschinen-riech...

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Life Sciences:

nachricht Chemists create new route to PHAs: naturally degradable bioplastics
21.11.2019 | Colorado State University

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>