Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen from Acidic Water

10.02.2012
Berkeley Lab Researchers Develop a Potential Low Cost Alternative to Platinum for Splitting Water
A technique for creating a new molecule that structurally and chemically replicates the active part of the widely used industrial catalyst molybdenite has been developed by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique holds promise for the creation of catalytic materials that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic.

Christopher Chang and Jeffrey Long, chemists who hold joint appointments with Berkeley Lab and the University of California (UC) Berkeley, led a research team that synthesized a molecule to mimic the triangle-shaped molybdenum disulfide units along the edges of molybdenite crystals, which is where almost all of the catalytic activity takes place. Since the bulk of molybdenite crystalline material is relatively inert from a catalytic standpoint, molecular analogs of the catalytically active edge sites could be used to make new materials that are much more efficient and cost-effective catalysts.

“Using molecular chemistry, we’ve been able to capture the functional essence of molybdenite and synthesize the smallest possible unit of its proposed catalytic active site,” says Chang, who is also an investigator with the Howard Hughes Medical Institute (HHMI). “It should now be possible to design new catalysts that have a high density of active sites so we get the same catalytic activity with much less material.”

Says Long, “Inorganic solids, such as molybdenite, are an important class of catalysts that often derive their activity from sparse active edge sites, which are structurally distinct from the inactive bulk of the molecular solid. We’ve demonstrated that it is possible to create catalytically active molecular analogs of these sites that are tailored for a specific purpose. This represents a conceptual path forward to improving future catalytic materials.”

Chang and Long are the corresponding authors of a paper in the journal Science describing this research titled “A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation.” Other authors are Hemamala Karunadasa, Elizabeth Montalvo, Yujie Sun and Marcin Majda.

Molybdenite is the crystalline sulfide of molybdenum and the principal mineral from which molybdenum metal is extracted. Although commonly thought of as a lubricant, molybdenite is the standard catalyst used to remove sulfur from petroleum and natural gas for the reduction of sulfur dioxide emissions when those fuels are burned. Recent studies have shown that in its nanoparticle form, molybdenite also holds promise for catalyzing the electrochemical and photochemical generation of hydrogen from water. Hydrogen could play a key role in future renewable energy technologies if a relatively cheap, efficient and carbon-neutral means of producing it can be developed.

Currently, the best available technique for producing hydrogen is to split water molecules into molecules of hydrogen and oxygen using platinum as the catalyst. However, with platinum going for more than $2,000 an ounce, the market is wide open for a low cost alternative catalyst. Molybdenite is far more plentiful and about 1/70th the cost of platinum, but poses other problems.

“Molybdenite has a layered structure with multiple microdomains, most of which are chemically inert,” Chang says. “High-resolution scanning tunneling microscopy studies and theoretical calculations have identified the triangular molybdenum disulfide edges as the active sites for catalysis; however, preparing molybdenite with a high density of functional edge sites in a predictable manner is extremely challenging.”

Chang, Long and their research team met this challenge using a pentapyridyl ligand known as PY5Me2 to create a molybdenum disulfide molecule that, while not found in nature, is stable and structurally identical to the proposed triangular edge sites of molybdenite. It was shown that these synthesized molecules can form a layer of material that is analogous to constructing a sulfide edge of molybdenite.

“The electronic structure of our molecular analog can be adjusted through ligand modifications,” Long says. “This suggests we should be able to tailor the material’s activity, stability and required over-potential for proton reduction to improve its performance.”

In 2010, Chang and Long and Hemamala Karunadasa, who is the lead author on this new Science paper, used the PY5Me2 ligand to create a molybdenum-oxo complex that can effectively and efficiently catalyze the generation of hydrogen from neutral buffered water or even sea water. Molybdenite complexes synthesized from this new molecular analog can just as effectively and efficiently catalyze hydrogen gas from acidic water.

“We’re now looking to develop molecular analogs of active sites in other catalytic materials that will work over a range of pH conditions, as well as extend this work to photocatalytic systems” Chang says.

Adds Long, “Our molecular analog for the molybdenite active site might not be a replacement for any existing catalytic materials but it does provide a way to increase the density of active sites in inorganic solid catalytic materials and thereby allow us to do more with less.”

This research was supported by the DOE Office of Science, in part through the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Additional Information

For more about the research of Christopher Chang, visit the Website at http://www.cchem.berkeley.edu/cjcgrp/

For more about the research of Jeffrey Long, visit the Website at http://alchemy.cchem.berkeley.edu/

For more information about the Joint Center for Artificial Photosynthesis visit the Website at https://solarfuelshub.org/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>