Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid Lighting Device

24.10.2012
Bacterial photosynthetic reaction center harvests more light thanks to tailored organic antenna

Getting energy from sunlight: Plants have it down; humans have not quite got the knack for it. Hybrid systems made from natural and synthetic components could open new routes for harvesting solar energy.



Italian researchers have now introduced an approach to this type of system. As described in the journal Angewandte Chemie, they have combined the photochemical core of a bacterial photosynthetic system with an organic dye that acts as an “antenna”, significantly improving the capture of light.

In all organisms fuelled by photosynthesis, the functional organization of the photosynthetic apparatus is the same: pigment-protein complexes capture the light like a radio antenna catching radio waves and conduct it to a central photochemical core, the reaction center. Here the energy is converted to an electron-hole pair: a negatively charged electron is separated from its molecular core, leaving behind a positively charged “hole”.

This charge-separated state must be maintained long enough to be used. The organism uses this to drive its metabolism. In technological applications, charge separation may be used to drive a redox reaction like the splitting of water into hydrogen and oxygen.

Nature has optimal control over these steps. Synthetic systems that efficiently capture light and use the energy to achieve charge separation have also been developed; however the lifetime of the charge separation is barely in the millisecond range. This is not enough to allow the energy to be drawn off efficiently. An interesting approach to solving this problem is to make hybrid systems that combine a tailored synthetic antenna with a natural “light converter”. Previously, synthetic antennas have been made from quantum dots, nanoscopic structures made of semiconductors.

Instead, researchers led by Gianluca M. Farinola and Massimo Trotta have elected to use a tailored organic dye molecule as their antenna. These have several advantages over inorganic structures: The molecular diversity of organic compounds allows for very fine tuning of the spectroscopic and electronic properties of the antenna. At the same time, the molecular form and flexibility can be controlled so that the antenna has practically no effect on the reaction center and its function, unlike quantum dots. An organic antenna can also be attached to nearly any desired location on the reaction center.

The Italian researchers combined their organic antenna with the extensively researched reaction center of the purple bacterium Rhodobacter sphaeroides R-26. They demonstrated that the antenna does not disrupt the function of the natural light converted; instead it improves its activity in a range of wavelengths not efficiently absorbed by the purely biological system.

About the Author
Dr Massimo Trotta is a Resercher at Institute of Physical Chemistry of the Italian National Research Council. He has been working on bacterial photosynthesis and its application in energy conversion and in environmental related issues for over 20 years. He has been chair of the COST Action Molecular machinery for ion translocation across the membrane.

Author: Massimo Trotta, Istituto per i Processi Chimico Fisici Nazionale delle Ricerche, Bari (Italy), mailto:m.trotta@ba.ipcf.cnr.it
Title: Enhancing the Light Harvesting Capability of a Photosynthetic Reaction Center by a Tailored Molecular Fluorophore

Angewandte Chemie International Edition 2012, 51, No. 44, 11019–11023, Permalink to the article: http://dx.doi.org/10.1002/anie.201203404

Dr Massimo Trotta | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>