Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hutchinson Center and TGen scientists discover potential 'break through' in pancreatic cancer

21.03.2012
New study shows how to defeat chemotherapy barrier in nation's 4th deadliest cancer

Scientists at Fred Hutchinson Cancer Research Center and the Translational Genomics Research Institute (TGen) have discovered a literal 'break through' in pancreatic cancer.

A unique biological barrier that pancreatic cancer tumors build around themselves have made them especially resistant to chemotherapy treatments, according to the Hutchinson Center/TGen study published today in the highly-regarded journal Cancer Cell.

Pre-clinical experiments show that a combination of drugs could break down the barrier surrounding these tumors, allowing chemotherapy drugs to freely spread and permeate throughout the cancerous tissue, according to the study.

"Discovering how to break through this barrier is a significant finding that could eventually enable therapeutic compounds to be much more effective in combating this deadly cancer and helping patients," said Dr. Daniel Von Hoff, M.D., TGen's Physician-In-Chief and one of the authors of the study, as well as one of the world's leading authorities on pancreatic cancer.

"The barrier surrounding pancreatic ductal adenocarcinoma has prevented therapeutics from reaching and effectively acting on this cancer," said Dr. Von Hoff, who also is head of TGen's Clinical Translational Research Division.

This research is now being tested for the first time in patients in the U.S. and Europe, including those at Seattle Cancer Care Alliance, the Hutchinson Center's patient treatment arm. These tests have the potential to significantly increase the length of survival in patients with pancreatic cancer, which is notoriously fast-spreading and among the most lethal of all cancers, the study says.

Dr. Sunil Hingorani, M.D., Ph.D., the study's senior author and an associate member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, developed the study's laboratory model. By combining gemcitabine — the current standard chemotherapy used to treat patients' pancreatic ductal adenocarcinomas — with an enzyme called PEGPH20, scientists showed that the tumor barrier could be broken down and the drug could more easily reach the cancerous tissue.

"This represents the largest survival increase we've seen in any of the studies done in a preclinical model, and it rivals the very best results reported in humans," Dr. Hingorani said. "Being able to deliver the drugs effectively into the tumor resulted in improved survival as well as the realization that pancreas cancer may be more sensitive to conventional chemotherapy than we previously thought."

Unlike most solid tumors, pancreas tumors use a two-pronged defense to keep small molecules, such as those contained in chemotherapy, from entering: a vastly reduced blood supply and the creation of a strong fibro-inflammatory response. The latter includes the production of fibroblasts, immune cells and endothelial cells that become embedded within a dense and complex extracellular matrix throughout the tumor. One major component of this matrix is a substance called hyaluronan, or hyaluronic acid (HA). HA is a glycosaminoglycan, a complex sugar that occurs naturally in the body and is secreted at extremely high levels by pancreatic cancer cells.

Dr. Hingorani, Dr. Von Hoff and their colleagues discovered that the fibro-inflammatory response creates unusually high interstitial fluid pressures that collapse the tumor's blood vessels. This in turn prevents chemotherapy agents from entering the tumors. The researchers found that HA is the main biological cause of the elevated pressures that leads to blood vessel collapse.

Administering the enzyme/gemcitabine combination degrades HA in the tumor barrier and results in rapid reduction of the interstitial fluid pressure. This in turn opens the blood vessels and permits high concentrations of chemotherapy to reach the tumor.

Details about the open clinical trial can be found at: http://clinicaltrials.gov/show/NCT01453153.

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States. Overall five-year survival is less than 5 percent with a median survival of four to six months.

Grants from the National Cancer Institute, the Giles W. and Elise G. Mead Foundation, Safeway and several individuals supported the research. Collaborators at the University of Washington also contributed to the study.

About Fred Hutchinson Cancer Research Center

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit http://www.fhcrc.org.

Press Contact:

Dean Forbes
206-667-2896
dforbes@fhcrc.org
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>