Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human umbilical stem cells cleared mice's cloudy eyes

09.12.2009
Research will be presented at America Society for Cell Biology conference

Transplanting human stem cells from umbilical cords onto the abnormally thin, cloudy corneas of laboratory mice significantly improved corneal transparency and increased the thickness of the animals' corneal stroma, the transparent middle layer, according to research that will be presented at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

These research results come at a time of limited supply of donated human corneas for treating patients with severe corneal and genetic eye diseases. Human umbilical cord mesenchymal stem cells (UMSCs) transplants may prove to be an alternative to corneal transplant surgeries.

The transplanted UMSCs survived in the mouse corneal stroma for more than three months with minimal signs of graft rejection, Winston Kao, Ph.D., of the University of Cincinnati School of Medicine reported at the ASCB conference.

In contrast, human umbilical hematopoietic stem cells (HUHSCs), the stem cells that give rise to all blood cells types, rapidly vanished from the mouse corneas when they were transplanted into the animals' eyes. Unlike the UMSCs, the HUHSCs were victims of graft-host rejection.

Kao reported that histological and immune fluorescence staining showed that the transplanted UMSCs could trans-differentiate and assume the appearance of normal corneal keratocytes.

The new cells expressed critical keratocyte markers such as keratocan and aldehyde dehydrogenase as well as the adhesion protein, CD34, all with little or no graft reaction.

The animal model for these studies, a special knockout mouse, was genetically engineered to lack the gene for making lumican, a protein essential for the formation and maintenance of a transparent cornea. Knockout mice without lumican have thin and cloudy corneas.

The supply of human corneas for transplantation is under threat from an unexpected direction: laser eye surgery. Reconfiguring the refractive surface of the cornea through laser surgery unfortunately can leave the cornea unsuitable for later organ donation. About 50,000 corneal transplants are performed each year in the U.S.

Having his proof of principle in hand, Kao said that he believes that UMSC transplants as an alternative treatment for severe genetic and corneal diseases are well worth pursuing. Unlike donated corneas, the supply of human UMSCs is almost unlimited, Kao said.

UMSCs are easy to isolate from the umbilical cord, their numbers can be expanded in cell culture, and they can be stored ⎯ and quickly recovered ⎯ from liquid nitrogen when a patient is in urgent need of a clear, healthy cornea.

Kao's research team included scientists at University of California, Irvine, Bionet Incorporated, Taipei, Taiwan, as well as University of Cincinnati School of Medicine.

Winston W-Y Kao, Ph.D. (513-558-2802; Winston.Kao@UC.Edu) will present poster, "Cell Therapy of Corneal Diseases with Umbilical Mesenchymal Stem Cells" on Tuesday, Dec. 8, during the 11:00 a.m.-12:30 p.m. Poster Session 3, Program #1694, Board #B73, Exhibit Halls D-H.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>