Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human spermatogonial stem cells become insulin-secreting pancreatic cells in lab

13.12.2010
Research presented at American Society for Cell Biology's 50th annual meeting

Insulin-secreting pancreatic islet cells have been generated from human spermatogonial stem cells (SSCs) directly isolated from human testicular tissue, researchers reported today at the American Association of Cell Biology 50th Annual Meeting in Philadelphia.

When grafted into diabetic mice that lacked a transplant-rejecting immune system, the bioengineered cells functioned much like somatic â-islet cells, the Georgetown University (GU) Medical Center researchers said.

By decreasing the animals' blood glucose levels, the human-derived islet cells demonstrated their potential to counter diabetic hyperglycemia in humans, added G. Ian Gallicano, Ph.D., who heads the GU research team.

Gallicano said that these results represent the first step of a transplant strategy to deliver â-islet cells that would not be rejected by the patient with type 1 diabetes because the stem cells would be obtained from the patient's own SSCs, the earliest precursors of male gamete sperm cells.

This transplant strategy would avoid the host-versus-graft issues that have plagued other transplant treatments for type 1 diabetes, Gallicano explained, because the SSCs would be obtained from male patients, modified in the laboratory to secrete insulin, and transplanted back to the donors.

Although surgeons currently transplant islet tissue from deceased donors into female and male patients with type 1 diabetes, this therapy is hampered by a woeful shortage of suitable donations and by complications resulting from host-versus-graft disease.

Gallicano said that obtaining beta-islet-like cells from the male patient's SSCs could solve the problem of immune rejection in males with type 1 diabetes, since the "treatment based on this research would be 'autologous,' that is, the cells come from the patient and would be recognized as 'self.'"

The fundamental approach of transforming male gametes into pluripotent stem cells might also be applicable to the female counterpart, oocytes, he added.

The â-islet-like cells were engineered from germ-derived pluripotent stem (gPS) cells produced from the SSCs. The engineered â-islet cells secreted insulin and exhibited many of the markers characteristic of normal islet cells including C-peptide (pro-insulin) production and the expression of PDX1, a transcription factor involved in pancreatic development.

For more information:

ASCB contacts:

Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814 (cell)
215-418-5306 (Dec. 11-16)
John Fleischman
jfleischman@ascb.org
513-929-4635 (direct)
513-706-0212 (cell)
Georgetown University contacts:
Ian Gallicano, Ph.D.
Georgetown University Medical Center
202-687-0228
gig@georgetown.edu
Rachel Pugh
Associate Director of Communications
Georgetown University 202-687-4328
rmp47@georgetown.edu
Gallicano will present "Functional, insulin-secreting pancreatic endoderm derived from human spermatogonial stem cells," Sunday, Dec. 12, 2010, 11:30 a.m. to 1 p.m., Metabolic Diseases 1. Exhibit Halls A/B/C, Program 703, Board B1113

Co-Authors:

Anirudh Saraswathula(1); Shenglin Chen, Asif Zakaria, and G. Ian Gallicano(2)

1Biotechnology and Life Sciences Laboratory, Science and Technology Division, Thomas Jefferson High School for Science and Technology, Alexandria, VA.

2Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC

Cathy Yarbrough | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>