Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human hair cells from a test tube

02.10.2018

Researchers from the University of Bern and Bern University Hospital have managed for the first time to differentiate human inner ear cells in a laboratory from somatic progenitors and to investigate their origin. This will make it possible to develop new treatment methods for hearing impairment in the future.

About 5% of the world population suffers from hearing impairment. Disabling hearing loss has far-reaching implications for those concerned and society as a whole.


Human cochlea at 10 weeks of development immunostained for markers to identify hair cell progenitors: "CD271" in yellow, "p27" in green.

© Marta Roccio and Michael Perny, Inner Ear Research Laboratory, Department for BioMedical Research (DBMR), University of Bern


Audiological examination, University Department of Ear, Nose, Throat (ENT), Head and Neck Surgery, Bern University Hospital.

© Tanja Läser for Insel Gruppe AG

Hearing loss in adults alone ranks among the five largest disease burdens in Europe and generates enormous socioeconomic costs. Hearing ability can be improved with hearing aids or cochlear implants, but to this day there is no causal treatment for hearing impairments.

A group of researchers from the Department for BioMedical Research (DBMR) at the University of Bern and the University Department of Ear, Nose, Throat (ENT), Head and Neck Surgery at Bern University Hospital has now made a big step towards establishing new methods that will serve for the developing new therapy of hearing impairment. This was achieved in cooperation with other participants in the international consortium "OTOSTEM".

For the first time they managed to imitate the development of human “hair cells”, which are responsible for sound reception in the inner ear, in-vitro (in the laboratory). As a result, in the future it will be possible to try out new pharmacological treatment directly on human cells. The study was published in the journal "Nature Communications".

How hearing works

Our ability to hear depends on the coordinated activity of two specialised types of sensory cells in the inner ear, more precisely in the cochlea. The so-called hair cells function as sound receptors by responding to vibrations which are caused by sounds. The hair cells release chemical messengers which in turn stimulate the so-called spiral ganglion cells.

These cells form the auditory nerve, which passes the information on to the brain, where it is perceived as sound. These cell types are organized in a complex mosaic. This enables us to perceive different sound intensities and frequencies with unprecedented speed and accuracy.

Hair cells do not grow again

Hair cells and spiral ganglion cells form very early during fetal development, roughly in the 10th to 11th week of pregnancy, when they reach their definitive number. "We are born with about 15,000 hair cells and 30,000 spiral ganglion cells, and from then on their number only decreases," says Marta Roccio. Loud noises, infections, aging processes or also exposure through toxins afflict the sensory cells from then on. Because the cells cannot be replaced, their loss leads to a permanent hearing impairment.

Cochlear hair cells from the laboratory

"In our study, we were able to show that much of what we already known from an animal models also applies to the human fetal development of sensory cells," says Marta Roccio. Thanks to this knowledge, the researchers were able to identify a small population of "progenitor cells" (similar to stem cells), which ultimately form the cochlear hair cells after several weeks of structural and functional differentiation.

"We have developed a methodology to isolate these progenitors from the human fetal cochlea and ultimately optimize the conditions for in-vitro generation of functional hair cells in the laboratory," explains Roccio. For this purpose, the researchers used three-dimensional cultures, also known as organoids.

"The results of the now published study constitute a unique template for future research projects in the field, in order to develop new strategies to combat neurosensory hearing loss," explains co-author Pascal Senn. Because the results would provide a "blueprint" for the generation of cochlear hair cells from other more abundant sources of cells such as pluripotent stem cells, adds Senn. This will pave the way for tests which are based on a patient’s own cell types and enable more individualized treatment.

Wissenschaftliche Ansprechpartner:

PD Dr. Marta Roccio (English/Italian)
Department for BioMedical Research (DBMR), University of Bern
E-mail: marta.roccio@dbmr.unibe.ch

Originalpublikation:

Roccio, M., Perny, M., Ealy, M., Widmer, H. R., Heller, S., Senn, P., 2018. Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors, Nature Communications, DOI: 10.1038/s41467-018-06334-7.

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2018/medien...

Nathalie Matter | Universität Bern

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>