Human brains pay a price for being big

Research published today in BioMed Central’s open access journal Genome Biology adds weight to the theory that schizophrenia is a costly by-product of human brain evolution.

Philipp Khaitovich, from the Max-Planck-Institute for Evolutionary Anthropology and the Shanghai branch of the Chinese Academy of Sciences, led a collaboration of researchers from Cambridge, Leipzig and Shanghai who investigated brains from healthy and schizophrenic humans and compared them with chimpanzee and rhesus macaque brains. The researchers looked for differences in gene expression and metabolite concentrations and, as Khaitovich explains, “identified molecular mechanisms involved in the evolution of human cognitive abilities by combining biological data from two research directions: evolutionary and medical”.

The idea that certain neurological diseases are by-products of increases in metabolic capacity and brain size that occurred during human evolution has been suggested before, but in this new work the authors used new technical approaches to really put the theory to the test.

They identified the molecular changes that took place over the course of human evolution and considered those molecular changes observed in schizophrenia, a psychiatric disorder believed to affect cognitive functions such as the capacities for language and complex social relationships. They found that expression levels of many genes and metabolites that are altered in schizophrenia, especially those related to energy metabolism, also changed rapidly during evolution. According to Khaitovich, “Our new research suggests that schizophrenia is a by-product of the increased metabolic demands brought about during human brain evolution”.

The authors conclude that this work paves the way for a much more detailed investigation. “Our brains are unique among all species in their enormous metabolic demand. If we can explain how our brains sustain such a tremendous metabolic flow, we will have a much better chance to understand how the brain works and why it sometimes breaks”, said Khaitovich.

Media Contact

Graeme Baldwin alfa

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors