Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hulk smash? Maybe not anymore: scientists block excess aggression in mice

20.06.2012
Understanding the biological basis of violent outbursts in mice could lead to treatments for antisocial and aggressive behavior

Pathological rage can be blocked in mice, researchers have found, suggesting potential new treatments for severe aggression, a widespread trait characterized by sudden violence, explosive outbursts and hostile overreactions to stress.

In a study appearing today in the Journal of Neuroscience, researchers from the University of Southern California and Italy identify a critical neurological factor in aggression: a brain receptor that malfunctions in overly hostile mice. When the researchers shut down the brain receptor, which also exists in humans, the excess aggression completely disappeared.

The findings are a significant breakthrough in developing drug targets for pathological aggression, a component in many common psychological disorders including Alzheimer's disease, autism, bipolar disorder and schizophrenia.

"From a clinical and social point of view, reactive aggression is absolutely a major problem," said Marco Bortolato, lead author of the study and research assistant professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy. "We want to find the tools that might reduce impulsive violence."

A large body of independent research, including past work by Bortolato and senior author Jean Shih, USC University Professor and Boyd & Elsie Welin Professor in Pharmacology and Pharmaceutical Sciences at USC, has identified a specific genetic predisposition to pathological aggression: low levels of the enzyme monoamine oxidase A (MAO A). Both male humans and mice with congenital deficiency of the enzyme respond violently in response to stress.

"The same type of mutation that we study in mice is associated with criminal, very violent behavior in humans. But we really didn't understand why that it is," Bortolato said.

Bortolato and Shih worked backwards to replicate elements of human pathological aggression in mice, including not just low enzyme levels but also the interaction of genetics with early stressful events such as trauma and neglect during childhood.

"Low levels of MAO A are one basis of the predisposition to aggression in humans. The other is an encounter with maltreatment, and the combination of the two factors appears to be deadly: it results consistently in violence in adults," Bortolato said.

The researchers show that in excessively aggressive rodents that lack MAO A, high levels of electrical stimulus are required to activate a specific brain receptor in the pre-frontal cortex. Even when this brain receptor does work, it stays active only for a short period of time.

"The fact that blocking this receptor moderates aggression is why this discovery has so much potential. It may have important applications in therapy," Bortolato said. "Whatever the ways environment can persistently affect behavior — and even personality over the long term — behavior is ultimately supported by biological mechanisms."

Importantly, the aggression receptor, known as NMDA, is also thought to play a key role in helping us make sense of multiple, coinciding streams of sensory information, according to Bortolato.

The researchers are now studying the potential side effects of drugs that reduce the activity of this receptor.

"Aggressive behaviors have a profound socio-economic impact, yet current strategies to reduce these staggering behaviors are extremely unsatisfactory," Bortolato said. "Our challenge now is to understand what pharmacological tools and what therapeutic regimens should be administered to stabilize the deficits of this receptor. If we can manage that, this could truly be an important finding."

Sean Godar, a postdoctoral student in the department of molecular pharmacology and toxicology at the USC School of Pharmacy, was co-lead author of the study. Kevin Chen, a research associate professor at the USC School of Pharmacy, was a co-author on the study. The research was funded by the National Institute of Mental Health of the National Institutes of Health under grant R01MH39085, the National Institute of Child Health and Human Development of the National Institutes of Health under grant R21HD070611, the Boyd and Elsie Welin Professorship help by Shih, and a USC Zumberge Research Individual Grant to Bortolato.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>