Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How viruses outsmart their host cells

07.03.2019

Scientists decipher protein structure after more than fifty years of research

Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses? For decades, researchers have been studying a type of bacteriophage known as 'lambda' to try and find an answer to this question.


3D structure of the complex consisting of the bacterial RNA polymerase (light and dark gray) and the viral λN protein (red). The lower end of the λN reaches inside the RNA polymerase, linking its two halves. At its upper end, the λN protein is in contact with RNA (orange) and various regulatory proteins (yellow, blue and green).

Credit: © Krupp/Charité

Using high-resolution cryo-electron microscopy, a research group from Charité - Universitätsmedizin Berlin has now successfully deciphered this process. Their findings have been published in Molecular Cell*.

No host, no viruses. While it is true that viruses are capable of spreading by surviving outside a host, they need a host for replication. Viruses lack the complex apparatus necessary for the transcription of genetic information and its subsequent translation into new virus components.

This is why all viruses need access to a host cell's molecular infrastructure. For decades, researchers have been studying the ways in which viruses successfully exploit host functions. Their efforts have been focused on 'bacteriophages' - viruses that rely on bacterial hosts for replication. One of the most intensively studied and best characterized of these is the 'lambda phage'.

Previous research had shown that the lambda phage introduced its own genetic information into that of its host, inserting it at a specific site in the host genome. 'RNA polymerase', a protein complex responsible for transcribing genetic information, would normally stop reading this information at the end of the bacterial gene and would ignore any viral genes inserted behind it.

The virus uses a trick that prevents the RNA polymerase from terminating the transcription process: it introduces 'lambda-N' (λN), a tiny protein which attaches itself to the host's RNA polymerase and forces it to continue transcription of the viral genes.

Until now, and despite intensive efforts, researchers had failed to identify how this tiny protein can achieve such a feat. A Berlin-based team of researchers has now been able to visualize the 3D structure of the RNA polymerase-λN-complex using high-resolution imaging, enabling them to provide a detailed explanation of this 'viral exploitation'.

For their study, researchers from Charité worked with colleagues from Freie Universität Berlin and the Max Planck Institute for Molecular Genetics. They started by producing the individual components of this large protein complex separately. After reassembling the components, they placed the resulting complex in a thin film of water and froze it.

Using cryo-electron microscopy, the researchers took a total of 700,000 images of the protein complex from various angles, using these to compute its 3D structure. "The nature of this structure told us that the small viral λN protein seals together the two halves of the RNA polymerase, thus preventing it from falling apart once it reaches the stop signal at the end of the bacterial gene," explains one of the study's first authors, Ferdinand Krupp, who is a doctoral student at Charité's Institute of Medical Physics and Biophysics.

"Because of this, the RNA polymerase continues transcribing even once it reaches the viral genes. Once all the viral genes have been read, they are then used as a blueprint for making daughter viruses - meaning the virus has achieved its objective," says the biophysicist. He adds: "Our data also explain many of the individual results recorded over five decades of research. Taken together, these findings may contribute to the development of new antibacterial drugs."

###

*Krupp F et al., Structural Basis for the Action of an All-Purpose Transcription Anti-Termination Factor. Mol Cell. 2019 Feb 19. doi: 10.1016/j.molcel.2019.01.016

Media Contact

Dr. Christian Spahn
christian.spahn@charite.de
49-304-505-24131

http://www.charite.de 

Dr. Christian Spahn | EurekAlert!
Further information:
https://www.charite.de/en/service/press_reports/artikel/detail/wie_ein_virus_seine_wirtszelle_ueberlistet/
http://dx.doi.org/10.1016/j.molcel.2019.01.016

More articles from Life Sciences:

nachricht Engineered microbe may be key to producing plastic from plants
07.03.2019 | University of Wisconsin-Madison

nachricht Multiple sclerosis: an attack on the brain’s control and storage center
07.03.2019 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Binding with consequences

Researchers from Freiburg and Ulm discover mechanism through which bacteria attack white blood cells

A research team led by Prof. Dr. Winfried Römer and Dr. Elias Hobeika from the University of Freiburg and the University Medical Center in Ulm has discovered a...

Im Focus: 'Immunizing' quantum bits so that they can grow up

New material enhances supercurrent in topological-insulator nanoribbon Josephson junctions

Quantum computers will process significantly more information at once compared to today's computers. But the building blocks that contain this information -...

Im Focus: Researchers identify how the bacterial replicative helicase opens to start DNA replication process

The new discovery may prove useful in developing a novel class of antibiotics and designing molecular nanodevices

DNA replication is a complex process in which a helicase ring separates the DNA molecule's two entwined and encoded strands, allowing each to precisely...

Im Focus: A new spin in nano-electronics

HZDR researchers succeed in controlling extremely short-wavelength spin waves

In recent years, electronic data processing has been evolving in one direction only: The industry has downsized its components to the nanometer range. But this...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

 
Latest News

Light and strong: Hybrid lightweight components made of steel and fiber-reinforced plastics

07.03.2019 | Materials Sciences

Light from an exotic crystal semiconductor could lead to better solar cells

06.03.2019 | Materials Sciences

Insulin strengthens the intestinal barrier and protects against colorectal cancer

06.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>