Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How viruses outsmart their host cells

07.03.2019

Scientists decipher protein structure after more than fifty years of research

Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses? For decades, researchers have been studying a type of bacteriophage known as 'lambda' to try and find an answer to this question.


3D structure of the complex consisting of the bacterial RNA polymerase (light and dark gray) and the viral λN protein (red). The lower end of the λN reaches inside the RNA polymerase, linking its two halves. At its upper end, the λN protein is in contact with RNA (orange) and various regulatory proteins (yellow, blue and green).

Credit: © Krupp/Charité

Using high-resolution cryo-electron microscopy, a research group from Charité - Universitätsmedizin Berlin has now successfully deciphered this process. Their findings have been published in Molecular Cell*.

No host, no viruses. While it is true that viruses are capable of spreading by surviving outside a host, they need a host for replication. Viruses lack the complex apparatus necessary for the transcription of genetic information and its subsequent translation into new virus components.

This is why all viruses need access to a host cell's molecular infrastructure. For decades, researchers have been studying the ways in which viruses successfully exploit host functions. Their efforts have been focused on 'bacteriophages' - viruses that rely on bacterial hosts for replication. One of the most intensively studied and best characterized of these is the 'lambda phage'.

Previous research had shown that the lambda phage introduced its own genetic information into that of its host, inserting it at a specific site in the host genome. 'RNA polymerase', a protein complex responsible for transcribing genetic information, would normally stop reading this information at the end of the bacterial gene and would ignore any viral genes inserted behind it.

The virus uses a trick that prevents the RNA polymerase from terminating the transcription process: it introduces 'lambda-N' (λN), a tiny protein which attaches itself to the host's RNA polymerase and forces it to continue transcription of the viral genes.

Until now, and despite intensive efforts, researchers had failed to identify how this tiny protein can achieve such a feat. A Berlin-based team of researchers has now been able to visualize the 3D structure of the RNA polymerase-λN-complex using high-resolution imaging, enabling them to provide a detailed explanation of this 'viral exploitation'.

For their study, researchers from Charité worked with colleagues from Freie Universität Berlin and the Max Planck Institute for Molecular Genetics. They started by producing the individual components of this large protein complex separately. After reassembling the components, they placed the resulting complex in a thin film of water and froze it.

Using cryo-electron microscopy, the researchers took a total of 700,000 images of the protein complex from various angles, using these to compute its 3D structure. "The nature of this structure told us that the small viral λN protein seals together the two halves of the RNA polymerase, thus preventing it from falling apart once it reaches the stop signal at the end of the bacterial gene," explains one of the study's first authors, Ferdinand Krupp, who is a doctoral student at Charité's Institute of Medical Physics and Biophysics.

"Because of this, the RNA polymerase continues transcribing even once it reaches the viral genes. Once all the viral genes have been read, they are then used as a blueprint for making daughter viruses - meaning the virus has achieved its objective," says the biophysicist. He adds: "Our data also explain many of the individual results recorded over five decades of research. Taken together, these findings may contribute to the development of new antibacterial drugs."

###

*Krupp F et al., Structural Basis for the Action of an All-Purpose Transcription Anti-Termination Factor. Mol Cell. 2019 Feb 19. doi: 10.1016/j.molcel.2019.01.016

Media Contact

Dr. Christian Spahn
christian.spahn@charite.de
49-304-505-24131

http://www.charite.de 

Dr. Christian Spahn | EurekAlert!
Further information:
https://www.charite.de/en/service/press_reports/artikel/detail/wie_ein_virus_seine_wirtszelle_ueberlistet/
http://dx.doi.org/10.1016/j.molcel.2019.01.016

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>