Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Toxins Activate Cellular Guides

06.07.2016

A diarrhoea pathogen modifies the surface of intestinal cells, enabling bacteria to colonize it more easily

The ingestion of antibiotics often damages the intestine’s natural flora. This prevents it from keeping pathogens under control; diarrhoea and intestinal inflammation are the result. Clostridium difficile is one of the pathogens that attack intestinal cells through toxins.


Bacterial toxins form cellular protrusions and use septins as guides.

Image by: Carsten Schwan

One of the things the bacteria does is cause a fine network of protrusions to form on the surface of the intestinal cells, thus enabling further bacteria to settle there. Prof. Dr. Dr. Klaus Aktories and Dr. Carsten Schwan and their research group at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have demonstrated how the toxin CDT of C. difficile bacteria forms these cellular protrusions.

The scientists published their research results in the scientific journal Proceedings of the National Academy of Sciences (PNAS). “By researching the CDT toxin, we are able to better understand how intestinal inflammations are caused by pathogens and how they develop,” says Aktories. “We can also use the toxin as a tool for shedding light on fundamental physiological processes.”

Especially aggressive bacteria of the C. difficile species produce toxins that destroy the cellular structure of intestinal cells. This inhibits the contacts between intestinal cells as well as their function as barriers, which can cause diarrhoea and inflammation. Two important elements of cellular structure are actin and microtubules, which play a key role in preserving the cell’s form, its function as a barrier and its cellular movement processes.

The CDT toxin of C. difficile modifies actin, thereby blocking its chain formation and disrupting its normal function. One result of this is that microtubule chains form more easily, which then multiply to such a degree that many cellular protrusions evolve. These form a network on the intestinal cell’s surface and promote the contact of bacteria with the host cell.

How CDT forms these cellular protrusions was not known until now. The scientists from the University of Freiburg have demonstrated that the influence of the toxin on the cooperation between the two scaffold proteins actin and tubulin depends on a third element: septins. There are up to 13 different septins in a human cell. They interact with each other and can form chains, rings or bands in a process called polymerization.

CDT modifies actin in such a way that the septins can no longer bind to the actin and instead migrate to the cellular membrane. Here, they form collar-like septin polymers, in which tube-shaped microtubules grow. Septins interact directly with the tips of growing microtubules and thus function as guides for the growth of these structures.

The research done by the University of Freiburg team also provides insight into the development of septin collar formations. The Cdc42 and Borg proteins regulate the transport of septins to the membrane and are thus a necessary condition for the collar formations to be able to develop. Similar to how the toxin CDT causes protrusions to form, septins also play a role in the human nervous system by forming nerve protrusions called neurites.

As in the first case, actin, microtubules and septins also interact closely here to form microscopically similar structures. Researching this toxin therefore helps us to better understand fundamental processes in the human body.

Klaus Aktories is the director of Department I at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg and a member of the University of Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Carsten Schwan is a research associate in Aktories’ lab.

Original publication:
Thilo Nölke, Carsten Schwan, Friederike Lehmann, Kristine Østevold, Olivier C. Pertz, and Klaus Aktories (2016). Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase CDT. PNAS. DOI: 10.1073/pnas.1522717113

Article on Klaus Aktories’ research in the University of Freiburg research magazine uni’wissen 01/2013:
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2013-1/#/36

Contact:
Prof. Dr. Dr. Klaus Aktories
Institute of Experimental and Clinical Pharmacology and Toxicology
University of Freiburg
Phone: +49 (0)761 / 203 - 5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-05.101-en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>