Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to target a gene

08.03.2018

Scientists find proteins important for plant development, DNA repair and gene targeting

All living cells have invented mechanisms to protect their DNA against breaks during duplication and against damage by UV-light or chemicals. A team of biologists led by Prof. Dr. Ralf Reski from the Faculty of Biology of the University of Freiburg, Germany has now found that members of the RecQ family function in development, DNA repair and gene targeting in the moss Physcomitrella patens.


Moss plants on a Petri dish.

Photo: Sigrid Gombert (University of Freiburg)

Their results were published in the journal Plant Cell and may hold the key to a precise engineering of plant genomes including crop plants. The Julius-Kuehn-Institute, the German Federal Research Centre for Cultivated Plants in Quedlinburg and the INRA Centre de Versailles-Grignon, France contributed to the study.

RecQ proteins can be found in bacteria, fungi, animals and plants. Their function is best investigated in humans, because mutations in these genes lead to disease syndromes like Bloom, Werner or Rothmund-Thomson or to cancer. Their function in plants was less well understood.

The team now found that the two model species predominantly analyzed for DNA recombination, the flowering plant Arabidopsis thaliana and the moss Physcomitrella patens, differ specifically in their RecQ4 and RecQ6 genes. Engineering different transgenic plants, the scientists found that RecQ4 is important for normal moss development and for DNA repair, whereas RecQ6, which does not exist in Arabidopsis, strongly enhances gene targeting.

Gene targeting in moss was first published by Reski’s group in 1998 and since then was used to answer many fundamental questions in biology. Moreover, this method was used extensively in biotechnology to create and to exploit knock-out mosses.

“Ever since we published the first knock-out mosses 20 years ago, I was curious to understand why Physcomitrella is orders of magnitude more efficient in gene targeting than any other plant”, explains Reski. Several groups world-wide tried to answer this conundrum, albeit in vain. Teaming up with the experts in Quedlinburg and in Versailles has finally brought success.

“We are now planning to express the moss RecQ6 gene in flowering plants to see, if we can significantly enhance their gene targeting also. Thus, we could modify crop plants with outstanding precision in the future”, says Reski.

The biologists at the University of Freiburg are specialized in moss research and have made significant contributions to the development of mosses as global model organisms in biology and biotechnology. Ralf Reski is a biologist and professor of plant biotechnology at the University of Freiburg, Germany. He is also a member of the cluster of excellence BIOSS Center for Biological Signalling Studies and was a senior fellow at the Freiburg Institute for Advanced Studies (FRIAS) and its French counterpart the University of Strasbourg Institute for Advanced Study (USIAS).

Chair of Plant Biotechnology at the University of Freiburg
www.plant-biotech.net

Original publication: Gertrud Wiedemann, Nico van Gessel, Fabian Köchl, Lisa Hunn, Katrin Schulze, Lina Maloukh, Fabien Nogué, Eva L. Decker, Frank Hartung, Ralf Reski (2018): RecQ helicases function in development, DNA-repair and gene targeting in Physcomitrella patens. Plant Cell, DOI: 10.1105/tpc.17.006372.

Figure legend: Moss plants on a Petri dish.
Photo: Sigrid Gombert (University of Freiburg)

Contact:
Prof. Dr. Ralf Reski
Chair Plant Biotechnology
Faculty of Biology
University of Freiburg
Germany
Phone: +49 (0)761/203-6969
E-Mail: pbt@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-to-target-a-gene?se...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>