Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to decrease the mass of aircrafts

09.02.2017

Technologists have created a material capable of replacing aluminum and titanium in aircrafts

Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers. The developed materials possess higher strength than metals, which helps to sufficiently decrease the mass of aircraft parts that operate at high temperatures. Scientists have published the project results in the Journal of Applied Polymer Science.


This is an engine fan with carbon-fiber cover.

Credit: Aleksander Babkin

A team of scientists from the Chair of Chemical Technology and New Materials at Lomonosov Moscow State University lead by Alexey V. Kepman, a Leading Researcher, is working on developing structural polymer composite materials. They are used for production of various constructions, vehicle components, and structural elements exploited under loading.

Aerospace industry, where material requirements are much higher, requires high performance polymer composites. Polymer composites are made of a polymer matrix and a reinforcement material (filling agent) that remain separate and distinct within the finished structure. For example, in carbon fiber reinforces composites (CFRP) carbon fabrics are used as a reinforcing agent while polyester or epoxy resins, bismaleimides, polyimides, and many other polymers -- as a matrix.

A modern airplane -- e.g. Boeing 787 Dreamliner -- consists of polymer composites for 50%, and a fighter aircraft -- Eurofighter -- of FRP for 70%. Development of high-temperature polymer composites will allow replacing the existing metal engine parts (for instance, low-pressure jet compressor blades) or supersonic aircraft body elements with polymer composite parts.

Chemists have applied a new approach to molecular design of bis-phthalonitrile monomers that are used as starting materials for polymer matrices. They have also developed materials with improved processing requirements suitable for cost-effective injection methods for CFRP manufacturing which is uncommon for most phthalonitriles known to date. Such methods allow to produce high-integrity CFRP parts of complex shape with minimal junction of elements.

The project members -- Boris Bulgakov and Alexander Babkin - say: "At the moment the operating temperature of polymer composite applications reaches up to no more than 150 °? for most popular materials and up to 250 °? -- for high temperature ones. And we have developed polymer composites with epoxy-like processing, appropriate for operation at elevated temperatures up to 450 °?".

One kilogram of titanium or aluminum alloy nowadays is much cheaper than the same amount of polymer composite (8-10 times less). However, according to Boris Bulgakov, production and maintenance of large complex shape parts made of polymer composites is hugely cheaper. Cost-effectiveness becomes possible due to a significant decrease of labor requirements for the assembly process and a high level of integrity of the resulting structures made of carbon fiber.

Boris Bulgakov explains: "For instance, a wing made of polymer composites is assembled by junction of 10 elements and a wing made of metal - of 100 elements. This means that construction of a metal wing costs more. Moreover, strength of CFRP is 6-8 times higher than that of aluminum and at the same time CFRP density is 1.5 times lower".

Polymer composites are widely used for production of premium automobiles, Formula-1 racing bolides, airplanes, and spaceships. Weight decrease in the case of airplanes results in fuel economy and increased aircraft useful load. Thus, the production cost of polymer composites is compensated by a reduction of fuel consumption and an increase in cargo capacity. Besides that, polymer composites are less expensive to maintain since they are not susceptible to corrosion.

Development of the new matrices for polymer composites has been conducted in the framework of the Federal Target Program "Research and Development in the Priority Areas of Development of the Russian Scientific and Technological Complex for 2014 - 2020." Professor V.V. Avdeev, the head of the Chair of Chemical Technology and New Materials has set a goal to organize pilot production of phthalonitrile resins. The resin samples, synthesized at Lomonosov Moscow State University, are under investigation at P. I. Baranov Central Institute of Aviation Motor Development, A.N. Tupolev Kazan National Research Technical University and other organizations.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

Further reports about: Polymer airplanes carbon fiber polymer matrices

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>