Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to become a T follicular helper cell

31.07.2015

Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design

Follicular helper Tcells (TFH cells), a rare type of immune cell that is essential for inducing a strong and lasting antibody response to viruses and other microbes, have garnered intense interest in recent years but the molecular signals that drive their differentiation had remained unclear. Now, a team of researchers at the La Jolla Institute for Allergy and Immunology has identified a pair of master regulators that control the fate of TFH cells.


Follicular helper T cells (cells with green surface markers) interact closely with B cells (cells with orange surface markers) to facilitate the proliferation of B cells and the production of high affinity antibodies. The interaction site is shown in yellow, DNA in blue.

Credit: Joyce Hu, La Jolla Institute of Allergy and Immunology

Their finding, published in this week's online edition of Nature Immunology, holds great promise for improved vaccine design and may lead to new treatments for immune disorders and possibly even cancer. "Almost all licensed human vaccines work on the basis of inducing a long-term, protective antibody response," says the study's lead author Shane Crotty, Ph.D., a professor in the Institute's Division of Vaccine Discovery. "Being able to enhance or increase the frequency of follicular helper T cells may be an excellent approach for better vaccine design."

Before B cells can launch a full-blown antibody response against invading pathogens they undergo a tightly orchestrated, multi-step maturation process aided by TFH cells. Often compared to a miniaturized Darwinian struggle for survival, this process selectively promotes the proliferation of B cells that produce high-affinity antibodies and weeds out those that produce less potent ones.

"B cells compete for TFH cells to survive," explains postdoctoral researcher and first author Youn Soo Choi, Ph.D., "Only those B cells that produce highly specific antibodies attract TFH cells and are able to proliferate." The survivors undergo successive rounds of mutation and selection resulting in better and better antibodies during the course of an immune response.

"TFH cells are essential for the production of most types of antibodies and defects in TFH function or frequency can have dramatic effects," says Crotty. "It may be particularly important when antibody targets are difficult to recognize and B cells need to explore a bigger mutational landscape. A better understanding of how these cells are produced could really make a difference in how likely it is that your body manages to make good antibodies against an infection."

In an earlier study, Crotty's team had identified the BCL6 gene as a crucial mastermind in the differentiation of TFH cells but important pieces of the puzzles had still been missing. A combination of functional genomics and bioinformatics analysis allowed Choi to narrow the list of potential candidates down to a pair of transcription factors, LEF-1 and TCF-1. Transcription factors act as master switching by binding to regulatory regions in the genome, where they modulate gene activity. He then confirmed the importance of LEF-1 and TCF-1 for the differentiation of TFH cells with the help of mice genetically engineered to lack the genes encoding either LEF-1 or TCF-1.

"Their activity pre-programs CD4+ T cells to respond to TFH induction signals," says Choi. "It seems very likely that any perturbation that results in lower levels of these transcription factors could decrease the likelihood that T cells differentiate into TFH cells."

As a matter of fact, individual differences in the predilection to make more TFH cells could explain why some individuals produce highly efficient antibodies against HIV, while most individuals are unable to mount a potent immune response. "It is very difficult to create high-affinity antibodies for HIV, which are necessary to neutralize virus," explains Crotty. "Interestingly, it turns out that those individuals that are able to make broadly neutralizing antibodies against HIV, have unusually elevated levels of highly functional memory TFH cells. We speculate that these people may have a genetic bias to produce a really good TFH response but we haven't identified it yet."

###

The research was supported by the La Jolla Institute for Allergy and Immunology, the American Cancer Society (RSG-11-161-01-MPC), and the National Institutes of Health (AI105351, AI112579, AI115149, AI119160, AI113806, AI109976, AI063107 and AI072543).

Full citation: "LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6." Youn Soo Choi, Jodi A Gullicksrud, Shaojun Xing, Zhouhao Zeng, Qiang Shan, Fengyin Li, Paul E Love, Weiqun Peng, Hai-Hui Xue & Shane Crotty. doi:10.1038/ni.3226

ABOUT LA JOLLA INSTITUTE

La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading towards its goal: life without disease®.

Media Contact

Gina Kirchweger
gina@lji.org
858-357-7481

 @liairesearch

http://www.liai.org 

Gina Kirchweger | EurekAlert!

Further reports about: B cells HIV T cells TFH antibody response immune response

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>