Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Zika virus can spread

11.11.2019

Scientists from Goethe University and Senckenberg Society for Nature Research are developing maps on the Zika virus infection risk

The spread of infectious diseases such as Zika depends on many different factors. Environmental factors play a role, as do socioeconomic factors.


Illustration 2: Zika infection risk modelled for South America.

Grafik: Uni Frankfurt

Recently, several attempts have be made to predict the transmission risk of the Zika virus at a global and local level, but the spatial and temporal patterns of transmission are still not well understood.

Researchers from Goethe University and the Senckenberg Society for Nature Research in Frankfurt were now able to generate reliable maps for the transmission risk of the Zika virus in South America.

The results have been published in the scientific journal “PeerJ”. Based on the models for South America, they will use the method to determine the Zika risk for Europe as well.

In most cases, mosquitoes of the genus Aedes transmit the Zika virus to humans. Primary vectors are the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Aedes albopictus). Both mosquito species are widespread in South America.

Whereas the yellow fever mosquito (Aedes albopictus) is nearly absent in Europe, the Asian tiger mosquito is widespread in the Mediterranean region.

“With our new modelling approaches we can illustrate the risk areas for Zika infections in Latin America,” says Sven Klimpel Professor for Parasitology and Infection Biology at Goethe University in Frankfurt and the Senckenberg Biodiversity and Climate Research Centre.

“The models additionally allow us to illustrate Zika risk areas for Europe. For example, our models indicate the two autochthonous cases in southern France in Département Var (see illustration).” At the end of October, French authorities announced the first Zika case in Europe; about a week later, a second case was made public.

According to the researcher’s calculations, the Zika infection risk in South America is highest along the Brazilian East Coast and in Central America. The risk is moderate in the Amazon region and lowest in the southern areas of the continent.

The following countries are especially affected according to the model: Brazil, Columbia, Cuba, the Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. In Europe, a risk of infection exists mainly in the Mediterranean region, but also in the inland regions of France and in the Rhine areas of Baden-Württemberg.

To determine the infection risk of a specific area, the researchers Dr Sarah Cunze and Professor Sven Klimpel modelled the potential spread of the two species of mosquito, Aedes aegypti and Aedes albopictus.

Since the mosquitoes can only transmit the Zika virus in regions where the virus is present in the first place, the researchers included an Evidence Consensus Map in their risk model. This map categorises the number of reported Zika illnesses at the regional level.

The average temperature of the warmest quarter was also incorporated in the model, since temperature has a significant influence on whether the virus can survive and multiply in the mosquito. Finally, the scientists added socioeconomic factors such as population density and gross domestic product to their risk model

Publication: Cunze S, Kochmann J, Koch LK, Genthner E, Klimpel S. 2019. Vector distribution and transmission risk of the Zika virus in South and Central America. PeerJ 7:e7920 DOI 10.7717/peerj.7920

An image maybe downloaded here: http://www.uni-frankfurt.de/83225123

Captions:
Illustration 1: Correlative modelling approach for regions with increased Zika infection risk in South America. In addition to the modelled expansion of the two main vector types (Aedes aegypti a1 and Ae. albopictus a2), the model incorporates the average temperature of the warmest quarter (b), the occurrence of the Zika virus (c) and the Dengue virus (e), population density (f) and the gross domestic product.
Illustration 2: Zika infection risk modelled for South America.
Illustration 3: Regions where an autochthonous transmission of the Zika virus through the bite of an infected tiger mosquito is possible, since the temperature conditions are suitable (red areas) and the tiger mosquito is already present as vector species (hatched areas).

Further information: Professor Sven Klimpel, Institute for Ecology, Evolution and Diversity, Faculty 15 (Biosciences), Riedberg Campus, phone +49 69 798-42237, E-Mail klimpel@bio.uni-frankfurt.de

Current news about science, teaching, and society can be found on GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance.

Internet: www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anke Sauter, Science and Humanities Editor, International Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: +49(0)69 798-13066, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de

Wissenschaftliche Ansprechpartner:

Professor Sven Klimpel, Institute for Ecology, Evolution and Diversity, Faculty 15 (Biosciences), Riedberg Campus, phone +49 69 798-42237, E-Mail klimpel@bio.uni-frankfurt.de

Originalpublikation:

Cunze S, Kochmann J, Koch LK, Genthner E, Klimpel S. 2019. Vector distribution and transmission risk of the Zika virus in South and Central America. PeerJ 7:e7920 DOI 10.7717/peerj.7920

Weitere Informationen:

https://aktuelles.uni-frankfurt.de/englisch/institute-of-ecology-how-the-zika-vi...

Jennifer Hohensteiner | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>