Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the waterwheel plant snaps

16.05.2018

Biologists and civil engineers have analysed the rapid movement of the snap-trap with which the carnivorous plant catches its prey

The midrib of the leaf (which has been transformed into a snap trap) bends slightly downwards in a flash, the trap halves fold in, and the water flea can no longer escape – as part of an interdisciplinary team Anna Westermeier, Dr. Simon Poppinga and Prof. Dr. Thomas Speck from the Plant Biomechanics Group at the Botanic Garden of the University of Freiburg have discovered how this snapping mechanism, with which the carnivorous waterwheel (Aldrovanda vesiculosa) catches its prey, works in detail. The study was carried out in the Collaborative Research Centre "Biological Design and Integrative Structures: Analysis, Simulation and Implementation in Architecture". In addition to the Freiburg biologists, experts from the Institute of Structural Analysis and Structural Dynamics (IBB) at the University of Stuttgart and from the Institute of Botany at the Czech Academy of Sciences were also involved. The team has published its results in the journal "Proceedings of the Royal Society B: Biological Sciences".


The waterwheel got its name because of the leaves that stick out like spokes on a wheel.

Photo: Plant Biomechanics Group

The Venus flytrap (Dionaea muscipula) and the far less known aquatic waterwheel are the only carnivorous plants with snap traps. While intensive research on the Venus flytrap has been going on for a long time, the ten times faster underwater snap traps of the waterwheel have so far been little studied. The team led by the Freiburg biologists has now deciphered the underlying movement principle using experiments and computer simulations. The researchers found that the waterwheel snaps shut its trap, which is only three millimetres in size, by actively changing the internal pressure in the cells of the leaf, which leads to the midrib bending, and also by releasing internal prestress, which apparently results in an acceleration effect. The Venus flytrap, on the other hand, employs a hydraulic mechanism to change the curvature of its leaf halves which results in rapid trap closure. Although both plants share many similarities, the mechanics of the traps differ considerably. This finding may not only help understanding the development of snap traps from an evolutionary perspective, but also the adaptation to different habitats – in a terrestrial habitat with the Venus flytrap, under water with the waterwheel.

The team also published a biomimetic implementation of the waterwheel trap movement principle as part of the Collaborative Research Centre at the beginning of 2018 - together with other colleagues from the IBB and the Institute for Load-bearing Structures and Structural Design (ITKE) at the University of Stuttgart and the German Institutes for Textile and Fibre Research (DITF). The facade shading Flectofold© shows the same opening and closing movement as its biological inspiration, the waterwheel, and can also be attached to complex building shells.

Original publications
• Westermeier, A. S./Sachse, R./Poppinga, S./Vögele, P./Adamec, L./ Speck, T./Bischoff, M. (2018): How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. In: Proceedings of the Royal Society B: Biological Sciences 285: 20180012.
doi: 10.1098/rspb.2018.0012
• Körner, A./Born, L./Mader, A./Sachse, R./Saffarian, S./Westermeier, A. S./Poppinga, S./Bischoff, M./Gresser, G. T./Milwich, M./Speck, T./Knippers, J. (2018): Flectofold – a biomimetic compliant shading device for complex free form facades. In: Smart Materials and Structures 27/1.
doi: 10.1088/1361-665X/aa9c2f

Article in Online magazine of the University of Freiburg about the biomimetic facade shading system Flectofold©
www.pr.uni-freiburg.de/pm-en/online-magazine/research-and-discover/plant-structures-inspire-cool-concepts

Caption:
The waterwheel got its name because of the leaves that stick out like spokes on a wheel.
Photo: Plant Biomechanics Group

Contact:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
thomas.speck@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-the-waterwheel-plan...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>