Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the waterwheel plant snaps

16.05.2018

Biologists and civil engineers have analysed the rapid movement of the snap-trap with which the carnivorous plant catches its prey

The midrib of the leaf (which has been transformed into a snap trap) bends slightly downwards in a flash, the trap halves fold in, and the water flea can no longer escape – as part of an interdisciplinary team Anna Westermeier, Dr. Simon Poppinga and Prof. Dr. Thomas Speck from the Plant Biomechanics Group at the Botanic Garden of the University of Freiburg have discovered how this snapping mechanism, with which the carnivorous waterwheel (Aldrovanda vesiculosa) catches its prey, works in detail. The study was carried out in the Collaborative Research Centre "Biological Design and Integrative Structures: Analysis, Simulation and Implementation in Architecture". In addition to the Freiburg biologists, experts from the Institute of Structural Analysis and Structural Dynamics (IBB) at the University of Stuttgart and from the Institute of Botany at the Czech Academy of Sciences were also involved. The team has published its results in the journal "Proceedings of the Royal Society B: Biological Sciences".


The waterwheel got its name because of the leaves that stick out like spokes on a wheel.

Photo: Plant Biomechanics Group

The Venus flytrap (Dionaea muscipula) and the far less known aquatic waterwheel are the only carnivorous plants with snap traps. While intensive research on the Venus flytrap has been going on for a long time, the ten times faster underwater snap traps of the waterwheel have so far been little studied. The team led by the Freiburg biologists has now deciphered the underlying movement principle using experiments and computer simulations. The researchers found that the waterwheel snaps shut its trap, which is only three millimetres in size, by actively changing the internal pressure in the cells of the leaf, which leads to the midrib bending, and also by releasing internal prestress, which apparently results in an acceleration effect. The Venus flytrap, on the other hand, employs a hydraulic mechanism to change the curvature of its leaf halves which results in rapid trap closure. Although both plants share many similarities, the mechanics of the traps differ considerably. This finding may not only help understanding the development of snap traps from an evolutionary perspective, but also the adaptation to different habitats – in a terrestrial habitat with the Venus flytrap, under water with the waterwheel.

The team also published a biomimetic implementation of the waterwheel trap movement principle as part of the Collaborative Research Centre at the beginning of 2018 - together with other colleagues from the IBB and the Institute for Load-bearing Structures and Structural Design (ITKE) at the University of Stuttgart and the German Institutes for Textile and Fibre Research (DITF). The facade shading Flectofold© shows the same opening and closing movement as its biological inspiration, the waterwheel, and can also be attached to complex building shells.

Original publications
• Westermeier, A. S./Sachse, R./Poppinga, S./Vögele, P./Adamec, L./ Speck, T./Bischoff, M. (2018): How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. In: Proceedings of the Royal Society B: Biological Sciences 285: 20180012.
doi: 10.1098/rspb.2018.0012
• Körner, A./Born, L./Mader, A./Sachse, R./Saffarian, S./Westermeier, A. S./Poppinga, S./Bischoff, M./Gresser, G. T./Milwich, M./Speck, T./Knippers, J. (2018): Flectofold – a biomimetic compliant shading device for complex free form facades. In: Smart Materials and Structures 27/1.
doi: 10.1088/1361-665X/aa9c2f

Article in Online magazine of the University of Freiburg about the biomimetic facade shading system Flectofold©
www.pr.uni-freiburg.de/pm-en/online-magazine/research-and-discover/plant-structures-inspire-cool-concepts

Caption:
The waterwheel got its name because of the leaves that stick out like spokes on a wheel.
Photo: Plant Biomechanics Group

Contact:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
thomas.speck@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-the-waterwheel-plan...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>