Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the waterwheel plant snaps

16.05.2018

Biologists and civil engineers have analysed the rapid movement of the snap-trap with which the carnivorous plant catches its prey

The midrib of the leaf (which has been transformed into a snap trap) bends slightly downwards in a flash, the trap halves fold in, and the water flea can no longer escape – as part of an interdisciplinary team Anna Westermeier, Dr. Simon Poppinga and Prof. Dr. Thomas Speck from the Plant Biomechanics Group at the Botanic Garden of the University of Freiburg have discovered how this snapping mechanism, with which the carnivorous waterwheel (Aldrovanda vesiculosa) catches its prey, works in detail. The study was carried out in the Collaborative Research Centre "Biological Design and Integrative Structures: Analysis, Simulation and Implementation in Architecture". In addition to the Freiburg biologists, experts from the Institute of Structural Analysis and Structural Dynamics (IBB) at the University of Stuttgart and from the Institute of Botany at the Czech Academy of Sciences were also involved. The team has published its results in the journal "Proceedings of the Royal Society B: Biological Sciences".


The waterwheel got its name because of the leaves that stick out like spokes on a wheel.

Photo: Plant Biomechanics Group

The Venus flytrap (Dionaea muscipula) and the far less known aquatic waterwheel are the only carnivorous plants with snap traps. While intensive research on the Venus flytrap has been going on for a long time, the ten times faster underwater snap traps of the waterwheel have so far been little studied. The team led by the Freiburg biologists has now deciphered the underlying movement principle using experiments and computer simulations. The researchers found that the waterwheel snaps shut its trap, which is only three millimetres in size, by actively changing the internal pressure in the cells of the leaf, which leads to the midrib bending, and also by releasing internal prestress, which apparently results in an acceleration effect. The Venus flytrap, on the other hand, employs a hydraulic mechanism to change the curvature of its leaf halves which results in rapid trap closure. Although both plants share many similarities, the mechanics of the traps differ considerably. This finding may not only help understanding the development of snap traps from an evolutionary perspective, but also the adaptation to different habitats – in a terrestrial habitat with the Venus flytrap, under water with the waterwheel.

The team also published a biomimetic implementation of the waterwheel trap movement principle as part of the Collaborative Research Centre at the beginning of 2018 - together with other colleagues from the IBB and the Institute for Load-bearing Structures and Structural Design (ITKE) at the University of Stuttgart and the German Institutes for Textile and Fibre Research (DITF). The facade shading Flectofold© shows the same opening and closing movement as its biological inspiration, the waterwheel, and can also be attached to complex building shells.

Original publications
• Westermeier, A. S./Sachse, R./Poppinga, S./Vögele, P./Adamec, L./ Speck, T./Bischoff, M. (2018): How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. In: Proceedings of the Royal Society B: Biological Sciences 285: 20180012.
doi: 10.1098/rspb.2018.0012
• Körner, A./Born, L./Mader, A./Sachse, R./Saffarian, S./Westermeier, A. S./Poppinga, S./Bischoff, M./Gresser, G. T./Milwich, M./Speck, T./Knippers, J. (2018): Flectofold – a biomimetic compliant shading device for complex free form facades. In: Smart Materials and Structures 27/1.
doi: 10.1088/1361-665X/aa9c2f

Article in Online magazine of the University of Freiburg about the biomimetic facade shading system Flectofold©
www.pr.uni-freiburg.de/pm-en/online-magazine/research-and-discover/plant-structures-inspire-cool-concepts

Caption:
The waterwheel got its name because of the leaves that stick out like spokes on a wheel.
Photo: Plant Biomechanics Group

Contact:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
thomas.speck@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-the-waterwheel-plan...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>