Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the intestinal fungus Candida albicans shapes our immune system

22.02.2019

Members of the Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI) have decoded a mechanism, how specific intestinal microbiota exacerbate inflammatory diseases at other body sites, such as the lungs.

The composition of the microorganisms living in and on our body - the so-called microbiome - has an enormous influence on human health. So far, it has not been possible to use this influence therapeutically, as the underlying mechanisms are largely unknown.


Alexander Scheffold, Cluster of Excellence "Precision Medicine in Chronic Inflammation", Professor of Immunology at Kiel University, Faculty of Medicine, and the University Medical Center Schleswig-Holstein, Campus Kiel.

Photo: Jürgen Haacks, Kiel University


Petra Bacher, Cluster of Excellence "Precision Medicine in Chronic Inflammation", Professor of Immunology and Immunogenetics at Kiel University, Faculty of Medicine, and the University Medical Center Schleswig-Holstein, Campus Kiel.

Photo: Jürgen Haacks, Kiel University

In the Cluster of Excellence "Precision Medicine in Chronic Inflammation" various research groups are working on deciphering these interactions between humans and the microbiome. A team from the Institute of Immunology and the Institute of Clinical Molecular Biology at Kiel University (CAU) and the University Medical Center Schleswig-Holstein (UKSH) has now made a ground-breaking discovery.

"We have discovered a mechanism how certain microbiota exacerbate inflammatory reactions in the lungs," said study leader Professor Petra Bacher. "The results now published in the scientific journal Cell offer new opportunities to better identify such disease processes and to provide targeted treatment," adds Professor Alexander Scheffold, head of the Institute of Immunology.

Humans live in close symbiosis with their microbiome, the countless bacteria, fungi and viruses that colonise the body surfaces, the skin, the intestines and the lungs. This coexistence is finely balanced and offers many benefits, such as protection against infections or help with the utilisation of nutrients.

A disturbed microbiome is associated with a wide variety of diseases. These include chronic inflammatory bowel diseases, allergies, metabolic diseases, autoimmune diseases, cancer or even depression. Thus the microbiome recently attracted much attention, considering that influencing the microbiome could treat almost all major diseases in industrialized countries.

In theory - but specific approaches are still lacking. The enormous diversity of the microbiome masks the essential components and the definition of cause and effect, preventing specific therapies.

The interaction with the microbiome is mainly controlled by the immune system. Cells of the immune system recognise specific microbes, and ensure a healthy balance. The key question is: how and by which microbes are the various effects on body functions triggered?

A team of scientists from the Charité - Universitätsmedizin Berlin, the University Hospital Cologne, the RUB University Clinic in Bochum and the Leibniz Institute for Natural Product Research and Infection Biology and the University Jena, under the leadership of Petra Bacher and Alexander Scheffold from the CAU and the UKSH, has achieved a breakthrough.

"We have identified the typically harmless fungus, Candida albicans, which colonises the intestine, skin and mucous membranes, as a central modulator of our immune system," explains Alexander Scheffold. "Candida albicans stimulates the immune system to produce certain immune cells, so-called Th17 cells. These enable a peaceful co-existence with the fungus."

For the study, the researchers developed a sensitive method to isolate the Th17 cells that target Candida albicans from the blood. Further analysis revealed that some of these Th17 cells also recognise other fungi, such as the mould fungus Aspergillus fumigatus. This phenomenon is known as cross-reactivity.

Mould spores are inhaled daily with the breathing air, but are harmless for healthy people. On the other hand, moulds can colonize the lungs of people suffering from chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease or asthma. This is suspected of worsening the disease.

"Surprisingly, we found that this group of patients has an increased population of cross-reactive Th17 cells in the lungs, which correlated with disease exacerbation. The protective Th17 response in the intestine seems to increase the disease-causing immune processes in the lungs," adds lead author Petra Bacher.
The researchers were thus able to show how a single member of the microbiome, Candida albicans, influences the specific immune reaction against a larger group of microbes at other body sites. Scheffold: "However, cross-reactivity is probably a common immune mechanism by which the microbiome manipulates the immune system, with protective or harmful effects. The ability to measure such specific effects of individual microbes now enables to develop targeted treatments."

Original publication
Petra Bacher, ... Alexander Schefold, et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell, published on Februar 21, 2019. https://doi.org/10.1016/j.cell.2019.01.041

Contact:
Prof. Dr Alexander Scheffold
Institute of Immunology, CAU and UKSH Kiel
Tel.: +49 (0)431/500- 31000
Alexander.Scheffold@uksh.de

Prof. Dr Petra Bacher
Institute of Immunology
Institute of Clinical Molecular Biology, CAU and UKSH Kiel
Tel.: +49 (0)431 500 31005
p.bacher@ikmb.uni-kiel.de

Photos are available to download:
https://precisionmedicine.de/pm/material/20190221_AlexanderScheffold_HaacksCAU.j...

Alexander Scheffold, Cluster of Excellence "Precision Medicine in Chronic Inflammation", Professor of Immunology at Kiel University, Faculty of Medicine, and the University Medical Center Schleswig-Holstein, Campus Kiel. Photo: Jürgen Haacks, Kiel University

https://precisionmedicine.de/pm/material/20190221_PetraBacher_HaacksCAU.jpg

Petra Bacher, Cluster of Excellence "Precision Medicine in Chronic Inflammation", Professor of Immunology and Immunogenetics at Kiel University, Faculty of Medicine, and the University Medical Center Schleswig-Holstein, Campus Kiel. Photo: Jürgen Haacks, Kiel University

Press contact:
Kerstin Nees
Tel.: (040) 8320998, E-mail: presse.cluster@uv.uni-kiel.de
Internet: https://precisionmedicine.de/

The Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI) has won funding from 2019 to 2025 through the German Excellence Strategy (ExStra). It succeeds the "Inflammation at Interfaces” Cluster, which had already won funding in two periods of the Excellence Initiative (2007-2018). Around 300 members from eight institutes at five locations are involved: Kiel (Kiel University, University Medical Center Schleswig-Holstein (UKSH), Muthesius University, Kiel Institute for the World Economy (IfW), Leibniz Institute for Science and Mathematics Education (IPN)), Lübeck (University of Lübeck, UKSH), Plön (Max Planck Institute for Evolutionary Biology), Borstel (Research Center Borstel - Leibniz Lung Center) and Großhansdorf (Lungenclinic Grosshansdorf). The aim is to draw on the multifaceted research approach to chronic inflammatory diseases of barrier organs, and transfer this interdisciplinarity to healthcare more intensively, as well as to fulfil previously unsatisfied needs of those affected. Three points are important in the context of a successful treatment, and are therefore at the centre of the PMI research: the early detection of chronic inflammatory diseases, the prediction of disease progression and complications, and the prediction of the individual response to treatment.

Cluster of Excellence "Precision Medicine in Chronic Inflammation"
Scientific Office, Head: Dr habil. Susanne Holstein
Postal address: Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Contact: Sonja Petermann
Tel.: +49 (0)431 880-4850, Fax: +49 (0)431 880-4894
E-mail: spetermann@uv.uni-kiel.de
Twitter: PMI @medinflame

Wissenschaftliche Ansprechpartner:

Prof. Dr Alexander Scheffold
Institute of Immunology, CAU and UKSH Kiel
Tel.: +49 (0)431/500- 31000
Alexander.Scheffold@uksh.de

Prof. Dr Petra Bacher
Institute of Immunology
Institute of Clinical Molecular Biology, CAU and UKSH Kiel
Tel.: +49 (0)431 500 31005
p.bacher@ikmb.uni-kiel.de

Originalpublikation:

Petra Bacher, ... Alexander Schefold, et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell, published on Februar 21, 2019. https://doi.org/10.1016/j.cell.2019.01.041

Kerstin Nees | idw - Informationsdienst Wissenschaft
Further information:
https://precisionmedicine.de/

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>