Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How the cytoplasm separates from the yolk


Cooperation of cell biologists and physicists at IST Austria unravels physical basis of yolk-cytoplasm segregation in early fish embryo | Study published in Cell

The segregation of yolk from the surrounding cytoplasm in the very early fish embryo is a key process for the development of the fish larva. To identify its underlying mechanisms, biologists at the Institute of Science and Technology Austria (IST Austria) teamed up with their colleagues from theoretical physics. The discovery: Actin dynamics in the bulk of the cell drive phase segregation in zebrafish oocytes.

Illustration of the segregation process: The octopus represents the actin organizing center of the zebrafish oocyte. It pulls the cytoplasmic pockets up, while it pushes the bigger yolk granules down

IST Austria/Justine Renno

As the zebrafish egg cell starts to divide, cytoplasm and yolk granules are segregated. Top: Bright-field images of the developing zebrafish embryo injected with green micron-sized polystyrene beads

IST Austria/Heisenberg group

A single-cell fish egg evolves into a multi-cell embryo in less than two hours after fertilization. Within these two hours, the cytoplasm, which will later form the animal body, must separate completely from the yolk, which the larva is going to feed on.

Previously, cell biologists had proposed that local expansion of the cell surface at one pole of the egg mediates this segregation. However, direct evidence supporting this model was lacking.

Joined forces: lab experiments and physical theory

To understand the physical basis of this segregation process, Shayan Shamipour, PhD student in the research group of developmental biologist Carl-Philipp Heisenberg, teamed up with the research group of theoretical physicist Edouard Hannezo. Based on the combined expertise of these two groups, the authors, also including a third professor of IST Austria, Björn Hof, reveal that the forces exerted at the cell surface are dispensable for this process—as opposed to previous models.

Instead, they discovered that combined pulling and pushing forces within the embryo facilitate the segregation of cytoplasm from the yolk granules. Importantly, the theory developed to describe this process can be applied to any segregation due to the forces exerted from an active fluid and could thus also be used to examine potential similar processes in mammalian/human embryos.

Size matters

But how are these concerted pulling and pushing movements generated? In the bulk of the cell, far away from the cell surface, filaments of actin and myosin—proteins also involved in muscle cell contraction—form a dense mesh. Polymerization and contraction of this mesh trigger actin flows towards the animal pole of the egg, the hemisphere that is going to differentiate into the later embryo. Via passive frictional forces, these actin flows drag along cytoplasm.

The bigger yolk granules, in contrast, are not dragged along by actin since their friction with actin is much lower. Instead, they are actively pushed, or rather squeezed, towards the opposite vegetal pole of the egg by comet-like actin structures—particular actin structures whose function had not been reported in developmental processes before. The combination of these pulling and pushing forces ensures a robust segregation of the cytoplasm and yolk granules within the developing embryo.

Bringing darkness into the light

By examining deeper parts of the cell more closely, the multi-disciplinary team has revealed that animal pole expansion at the cell surface, as previously proposed, is not essential for the yolk-cytoplasm segregation.

“The actin structures at the cell surface appear very bright and are therefore quite easy to study. Maybe that’s why scientists have so far simply missed to look more deeply into the much darker bulk area, which makes up most of the cell,” says Shayan Shamipour, lead author of the study.

Refined image processing allowed the IST Austria researchers to take a closer look at the developments in fish eggs during the moments right after fertilization. But, as Shamipour adds, another key to success was something else:

“To catch the very first moments of egg development, we had to be really fast: Whenever one of our fish had started to release its eggs into the water, I would press start on my stop watch and my colleagues would see me sprint from the fish facility to the microscopy room to observe and record the process.”

Curiosity-driven teamwork at its best

According to the cell biologist with a background in physics, Shamipour had been suspicious of the prevailing surface-based explanation for a while: “The embryo follows a big goal: It has to divide from one into thousands of cells in a very short amount of time. It was thus evident that the proposed surface mechanism alone could not accomplish this segregation and that the embryo would have to come up with some other mechanisms to accelerate the process.”

It is this curiosity-driven attitude of the young scientist paired with the interdisciplinary research culture of the Heisenberg and Hannezo groups—a mode of scientific work IST Austria particularly fosters—that enabled Shamipour to identify and analyze central cell processes that could be relevant in many other settings and organisms.

This project has received funding from the European Union (European Research Council Advanced Grant) and from the Austrian Science Fund (FWF).

IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Animal welfare
Understanding cell biological processes is only possible by studying real cells, in this case of zebrafish. No other methods can serve as alternatives. The animals were raised, kept and treated according to the strict regulations of Austrian law.

Wissenschaftliche Ansprechpartner:

Carl-Philipp Heisenberg,,
and Edouard Hannezo,


Shayan Shamipour, Roland Karos, Shi-Lei Xue, Björn Hof, Edouard Hannezo & Carl-Philipp Heisenberg. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. DOI: 10.1016/j.cell.2019.04.030

Weitere Informationen: Hannezo group Heisenberg group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Zebrafish actin cell surface cytoplasm fertilization oocytes

More articles from Life Sciences:

nachricht How to generate a brain of correct size and composition
10.05.2019 | Institute of Science and Technology Austria

nachricht New type of highly sensitive vision discovered in deep-sea fish
10.05.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers take a step towards light-based, brain-like computing chip

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can...

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

Im Focus: RadarGlass: Functional thin-film structures for integrated radar sensors

It is only an inconspicuous piece of paper, but it is an important milestone for autonomous driving: At the end of 2018 the three partners from the joint research project RadarGlass applied for a patent for an innovative radar system. The Fraunhofer Institute for Laser Technology ILT from Aachen, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden and the Institute of High Frequency Technology IHF of RWTH Aachen University have developed a coating process chain that enables radar sensors to be integrated in car headlights. After almost two years in development they have manufactured a working prototype.

Completely autonomous vehicles pose an enormous challenge for sensor technology because, in principle, the supporting system must hear, see and feel better...

Im Focus: Novel method developed by HKBU scholars could help produce purer, safer drugs

Physics and Chemistry scholars from Hong Kong Baptist University (HKBU) have invented a new method which could speed up the drug discovery process and lead to the production of higher quality medicinal drugs which are purer and have no side effects. The technique, which is a world-first breakthrough, uses a specific nanomaterial layer to detect the target molecules in pharmaceuticals and pesticides in just five minutes.

The new HKBU invention can be applied to the drug discovery process, as well as the production and quality control stages of pharmaceutical manufacturing. It...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Latest News

Computing faster with quasi-particles

10.05.2019 | Physics and Astronomy

Solar-powered hydrogen fuels a step closer

09.05.2019 | Materials Sciences

Physicists propose perfect material for lasers

09.05.2019 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>