Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How successful is the restoration of coral reefs?

13.02.2020

The current coral reef crisis has led to increasing attempts to restore damaged reefs. How successful are these efforts? Could they actually avert a mass extinction of reefs? For the first time, an international team of scientists now provides a comprehensive overview of the state of the art in reef restoration research and practice in the journal PLoS ONE and develops suggestions for improvement.

"What has been good practice in forestry for many decades has not yet been fully established in reef restoration: often there are no clearly defined goals, no preliminary investigation of the reef condition and causes of damage, and no longer-term monitoring of results afterwards", explains Dr. Sebastian Ferse, one of the authors of the study.


Breeding small coral colonies of different species in shallow water, Indonesia.

Photo: Sebastian Ferse, Leibniz Centre for Tropical Marine Research


Damselfish colonize coral fragments that have been exposed on small cement bases, Indonesia.

Photo: Sebastian Ferse, Leibniz Centre for Tropical Marine Research

Ferse is a reef ecologist at the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen and has many years of experience in the restoration of coral reefs.

The measures range from local initiatives of the tourism industry or environmental conservation organisations to scientific studies and large-scale programmes of some governments.

Due to the recent extended mass bleaching, Australia, for example, is currently investing massively in the investigation of various approaches to saving and restoring the Great Barrier Reef, which brings the country's economy a considerable sum of around 6.4 billion dollars annually.

Corals reproduce sexually, but also asexually. If parts of corals break off, they can reattach to the sea floor and grow into a new coral colony. This reproduction strategy is particularly common in branching corals, and is also taken advantage of by one of the most common restoration approaches.

For example, fragments are taken from healthy coral colonies in the reef and transplanted to damaged reef areas. However, this method is only suitable for limited local damage caused for example by ship groundings, storms or blast fishing, because it involves a very high amount of work. In addition, the mother colonies are damaged by the removal of fragments.

Often the coral branches are first allowed to grow in nurseries in calm shallow water or in tanks on land, where they are better protected from harmful influences during their sensitive early growth phase. Above a certain size they are then transplanted. According to studies, about 60 - 70 % of such transplants survive at least the first months in the reef.

"However, the figures are deceptive," comments Ferse, "because long-term controls are rare. It is quite possible that after only two years less than one in ten transplanted colonies will be alive."

For these methods, branching corals like those of the genus Acropora are used most frequently, because they are easy to fragment. In many restoration projects, extensive areas of coral monocultures are created, which are poor in other reef species. Since the fragments are clones, the genetic diversity in the coral plantations is highly reduced, and the corals are more susceptible to stress.

Another approach therefore takes advantage of sexual reproduction. The restorers collect eggs and sperm, which many coral species release synchronously into the water as dense clouds. The eggs are fertilised in breeding tanks and grow into larvae, which are then released onto the reef.

However, it can take several years before a larva develops into a small coral colony. Also, large quantities of the small organisms have to be used in this approach, since a large proportion of the released larvae die without ever growing into a coral polyp.

Where a reef is destroyed, coral rubble accumulates on the sea floor, which is moved back and forth by waves and currents. Coral larvae can only settle on stable substrate, however. "When it comes to artificial substrates for colonization, coastal managers have shown a lot of imagination," says Ferse.

"It's not uncommon for waste to be disposed of under the guise of nature conservation." Car tyres, concrete blocks, railway wagons and even airplanes are just a few examples. Under water, corrosion can lead to the release of toxins, or tyres and parts of scrap metal may loosen, drift through the reef and cause further damage.

However, the study also shows that despite all objections, coral outplanting using larvae or fragments can be successful in addressing local reef damage. For example, following a ship-grounding off the coast of Florida, the reef could regenerate itself within 10 to 15 years following targeted restoration.

An important prerequisite is that the stress factors causing damage are known and can be eliminated. The ground may have to be cleaned or consolidated for the settlement of coral offspring, preferably with natural materials such as stones.

"But we are not able to recreate an entire coral reef through restoration. We are simply providing a jump-start to get the reef back on track. Ultimately, it must regenerate itself," says Sebastian Ferse. "Extensive damage caused by climate change and coral bleaching or by eutrophication and sediment pollution of entire sections of the coast present us with new challenges.”

Intensive research is currently being conducted into innovative approaches that can be applied on a large scale. Examples under discussion include autonomous underwater vehicles that release larvae over large areas, or targeted breeding of coral species that are more resistant to ocean warming and bleaching.

Note to the media: At the 14th International Coral Reef Symposium (ICRS), which will take place in Bremen from 5 to 10 July, one topic area will be devoted to reef restoration. Dr. Sebastian Ferse will moderate the "Open Session (13A) - Interventions and Restoration".
https://www.icrs2020.de/program/session-program/#c245

Wissenschaftliche Ansprechpartner:

Dr. Sebastian Ferse
Leibniz Centre for Tropical Marine Research
Tel: 0421 / 23800-114
Email: sebastian.ferse@leibniz-zmt.de

Originalpublikation:

Boström-Einarsson L., R.C. Babcock, E. Bayraktarov, D. Ceccarelli, N. Cook, S.C.A. Heel, B. Hancock, P. Harrison, M. Hein, E. Shaver, A. Smith, D. Suggett, P.J. Stewart-Sinclair, T. Vardi & I.M. McLeod (2020): Coral restoration - A systematic review of current methods, successes, failures and future directions. PLoS ONE 15(1):e0226631. doi:10.1371/journal.pone.0226631.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

Further reports about: Marine Tropenforschung ZMT coral reefs coral species sea floor

More articles from Life Sciences:

nachricht Quick notes in the genome
07.07.2020 | Max-Planck-Institut für molekulare Genetik

nachricht Limitations of Super-Resolution Microscopy Overcome
07.07.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>