Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How staying in shape is vital for reproductive success

21.01.2019

New research reveals that cells must keep their shape and proportions to successfully reproduce through cell division

Cells must keep their shape and proportions to successfully reproduce through cell division, finds new research from the Francis Crick Institute and King's College London.


These are S. japonicus yeast cells, with nuclei shown in pink, which have been edited so that they cannot scale. The cells are shown dividing over time, starting at the top and after approximately four hours at the bottom. The cells on the left are in a narrow channel to restrict their width and are able to divide correctly, while those on the right in a wider channel cannot.

Credit: Snezhka Oliferenko

The research, published in Nature Communications, reveals a fundamental biological basis for scaling, where cells maintain their proportions as they grow or shrink. This principle is seen throughout life, from single cells through to complex organisms, but its biological origins have remained a mystery.

By studying yeast cells from the related S. japonicus and S. pombe species, the team discovered that scaling plays a vital role in cell division. To successfully reproduce through cell division, fission yeast cells need to copy their DNA and then split down the middle to create two new cells. The new study reveals that staying in the right shape is essential for cells to find their 'middle' where the split should occur.

Fission yeast cells are typically pill-shaped, and the tips send molecular signals which meet in the middle. The latest research found that if the cell is too round and the ends aren't far apart enough, the signals get mixed up and the cell can't tell where the middle is. When a rounded cell divides, it breaks apart off-centre, which can either tear the DNA and kill the cell or leave two copies of DNA in one cell and none in the other.

"If a division leaves two copies of DNA in one cell, the one without DNA will die and the one with two copies is likely to have problems when it next divides, which in human cells can lead to cancer," explains Professor Snezhka Oliferenko, research group leader at the Crick and King's.

"To avoid this, it's vital that the division happens in the right place. We found that a cell's shape determines where it will divide, highlighting the crucial function of scaling at the cellular level. This helps to answer the fundamental evolutionary question of why and how organisms would evolve the ability to scale when their size changes."

When yeast cells are genetically edited or fed a restricted diet, they shrink to conserve nutrients when they divide.

"We found that S. japonicus relies on a gene called rga4 to regulate growth so the cell keeps its shape when it shrinks," says lead author Dr Ying Gu, postdoc in Snezhka's lab. "The cells simply divided into thinner cells of the same shape, which were able to live and multiply as normal."

The team found that when they disabled the rga4 gene, cells lost their ability to scale so grew too 'fat' and divided off-centre. However, when these genetically-edited cells were grown in a narrow channel to keep them thin, they divided as normal.

"As long as the length-to-width aspect ratio is correct, S. japonicus can accurately divide in the middle and continue to thrive," says Snezhka. "It's a beautiful organism to study, as it allows us to test fundamental biological principles and get clear, elegant results. We can ask questions like 'What's the point in scaling?', 'Why does cell shape matter?' and many more. By studying the similarities and differences between S. japonicus and sister species like S. pombe, we can gain insights into processes that are fundamental to life itself."

Media Contact

Harry Dayantis
harry.dayantis@crick.ac.uk
44-203-796-3606

 @thecrick

http://www.crick.ac.uk 

Harry Dayantis | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-08218-2

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>