Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How staying in shape is vital for reproductive success

21.01.2019

New research reveals that cells must keep their shape and proportions to successfully reproduce through cell division

Cells must keep their shape and proportions to successfully reproduce through cell division, finds new research from the Francis Crick Institute and King's College London.


These are S. japonicus yeast cells, with nuclei shown in pink, which have been edited so that they cannot scale. The cells are shown dividing over time, starting at the top and after approximately four hours at the bottom. The cells on the left are in a narrow channel to restrict their width and are able to divide correctly, while those on the right in a wider channel cannot.

Credit: Snezhka Oliferenko

The research, published in Nature Communications, reveals a fundamental biological basis for scaling, where cells maintain their proportions as they grow or shrink. This principle is seen throughout life, from single cells through to complex organisms, but its biological origins have remained a mystery.

By studying yeast cells from the related S. japonicus and S. pombe species, the team discovered that scaling plays a vital role in cell division. To successfully reproduce through cell division, fission yeast cells need to copy their DNA and then split down the middle to create two new cells. The new study reveals that staying in the right shape is essential for cells to find their 'middle' where the split should occur.

Fission yeast cells are typically pill-shaped, and the tips send molecular signals which meet in the middle. The latest research found that if the cell is too round and the ends aren't far apart enough, the signals get mixed up and the cell can't tell where the middle is. When a rounded cell divides, it breaks apart off-centre, which can either tear the DNA and kill the cell or leave two copies of DNA in one cell and none in the other.

"If a division leaves two copies of DNA in one cell, the one without DNA will die and the one with two copies is likely to have problems when it next divides, which in human cells can lead to cancer," explains Professor Snezhka Oliferenko, research group leader at the Crick and King's.

"To avoid this, it's vital that the division happens in the right place. We found that a cell's shape determines where it will divide, highlighting the crucial function of scaling at the cellular level. This helps to answer the fundamental evolutionary question of why and how organisms would evolve the ability to scale when their size changes."

When yeast cells are genetically edited or fed a restricted diet, they shrink to conserve nutrients when they divide.

"We found that S. japonicus relies on a gene called rga4 to regulate growth so the cell keeps its shape when it shrinks," says lead author Dr Ying Gu, postdoc in Snezhka's lab. "The cells simply divided into thinner cells of the same shape, which were able to live and multiply as normal."

The team found that when they disabled the rga4 gene, cells lost their ability to scale so grew too 'fat' and divided off-centre. However, when these genetically-edited cells were grown in a narrow channel to keep them thin, they divided as normal.

"As long as the length-to-width aspect ratio is correct, S. japonicus can accurately divide in the middle and continue to thrive," says Snezhka. "It's a beautiful organism to study, as it allows us to test fundamental biological principles and get clear, elegant results. We can ask questions like 'What's the point in scaling?', 'Why does cell shape matter?' and many more. By studying the similarities and differences between S. japonicus and sister species like S. pombe, we can gain insights into processes that are fundamental to life itself."

Media Contact

Harry Dayantis
harry.dayantis@crick.ac.uk
44-203-796-3606

 @thecrick

http://www.crick.ac.uk 

Harry Dayantis | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-08218-2

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Biophysicists reveal how optogenetic tool works

29.05.2020 | Life Sciences

Convenient location of a near-threshold proton-emitting resonance in 11B

29.05.2020 | Physics and Astronomy

Mapping immune cells in brain tumors

29.05.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>