Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How roots find their way to water

12.02.2020

High-resolution 3D microscopy shows how plants adapt flexibly to their surroundings.

Plants use their roots to search for water. While the main root digs downwards, a large number of fine lateral roots explore the soil on all sides. As researchers from Nottingham, Heidelberg and Goethe University of Frankfurt report in the current issue of “Nature Plants”, the lateral roots already “know” very early on where they can find water.


The plant (Arabidopsis thaliana) is mounted in a three-dimensional assembly, stands upright in a plant-derived gel appropriate for the species and supplied with medium and light.

Image rights: Daniel von Wangenheim.

For his experiment, Daniel von Wangenheim, a former doctoral researcher in Professor Ernst Stelzer’s Laboratory for Physical Biology and most lately a postdoc at Malcolm Ben-nett’s, mounted thale cress roots along their length in a nutrient solution.

They were, how-ever, not completely immersed and their upper side left exposed to the air. He then ob-served with the help of a high-resolution 3D microscope how the roots branched out.

To his surprise, he discovered that almost as many lateral roots formed on the air side as on the side in contact with the nutrient solution.

As he continued to follow the growth of the roots with each cell division in the microscope, it became evident that the new cells drive the tip of the root in the direction of water from the very outset, meaning that if a lateral root had formed on the air side, it grew in the direction of the agar plate.

“It’s therefore clear that plants first of all spread their roots in all directions, but the root ob-viously knows from the very first cell divisions on where it can find water and nutrients,” says Daniel von Wangenheim, summarizing the results.

“In this way, plants can react flex-ibly to an environment with fluctuating resources.”

The result is based on many hours of film material recorded using Light Sheet Fluores-cence Microscopy (LSFM), a technique developed by Ernst Stelzer. In a vivid video clip, Daniel von Wangenheim shows the root-branching process in slow motion. His tweet has already attracted considerable attention from his colleagues in the field.
https://twitter.com/DvonWangenheim/status/1224365891292405760)

Publication: Daniel von Wangenheim, Jason Banda, Alexander Schmitz, Jens Boland, Anthony Bishopp, Alexis Maizel, Ernst H. K. Stelzer and Malcolm Bennett: Early develop-mental plasticity of lateral roots in response to asymmetric water availability, in Nature Plants (3 February 2020), https://doi.org/10.1038/s41477-019-0580-z)

A picture can be downloaded under: http://www.uni-frankfurt.de/85595433
Caption: Light Sheet Fluorescence Microscopy is based on two processes: 1) lateral illumination of the specimen with laser light along a plane and 2) detection of fluorescent light emitted from a thin volume centred around the illumination plane. The plant (Arabidopsis thaliana) is mounted in a three-dimensional assembly, stands upright in a plant-derived gel appropriate for the species and supplied with medium and light.
Image rights: Daniel von Wangenheim.

Further information: Dr Daniel von Wangenheim, Plant and Crop Sciences, School of Biosci-ences, University of Nottingham, UK, Email: daniel.vonwangenheim@nottingham.ac.uk

Wissenschaftliche Ansprechpartner:

Further information: Dr Daniel von Wangenheim, Plant and Crop Sciences, School of Biosci-ences, University of Nottingham, UK, Email: daniel.vonwangenheim@nottingham.ac.uk

Originalpublikation:

Publication: Daniel von Wangenheim, Jason Banda, Alexander Schmitz, Jens Boland, Anthony Bishopp, Alexis Maizel, Ernst H. K. Stelzer and Malcolm Bennett: Early develop-mental plasticity of lateral roots in response to asymmetric water availability, in Nature Plants (3 February 2020), https://doi.org/10.1038/s41477-019-0580-z)

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New synthesis methods enhance 3D chemical space for drug discovery
12.02.2020 | Emory Health Sciences

nachricht The Cerebellum Stores Data Like an MP3 Music File
12.02.2020 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

The Cerebellum Stores Data Like an MP3 Music File

12.02.2020 | Life Sciences

Blowing in the wind: A polygynous shorebird decides where to breed based on the prevailing wind conditions

12.02.2020 | Life Sciences

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>