Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants synthesise salicylic acid

02.08.2019

The pain-relieving effect of salicylic acid, now sold as Aspirin, has been known for thousands of years. Besides being a useful drug with numerous health applications, it is a stress hormone made by plants which is essential in enabling them to fight off damaging pathogens. What was not known, however, is how plants generated this hormone. Now, an international research team led by the University of Göttingen with the University of British Columbia in Vancouver have at last unravelled the biosynthesis of this crucial hormone. Their results were published in Science.

As far back as Neanderthal times, bark containing salicylic acid was chewed to self-medicate; the first chemical extraction was in the 1820s, and an improved version has been marketed as Aspirin for over 120 years. But no-one understood how plants actually made it.


Daniel Lüdke shows his colleagues the results of the microscopic examination.

Photo: Philipp Niemeyer


Dmitrij Rekhter shows Professor Ivo Feußner the growth status of his plants.

Photo: Philipp Niemeyer

Then, 20 years ago researchers using the plant Arabidopsis thaliana discovered the first gene involved in salicylic acid synthesis. Ever since, countless groups have tried to identify the missing steps on the way to salicylic acid.

Dmitrij Rekhter and colleagues from the Department of Plant Biochemistry at the University of Göttingen found a way to investigate. They used special Arabidopsis plants isolated by Professor Zhang’s team at the University of British Columbia, which have extremely elevated levels of salicylic acid.

Then the researchers found that the precursor to salicylic acid accumulates in these plants if a gene of previously unknown function (PBS3) is removed. The team in Göttingen was therefore able to deduce the action of the gene product.

As first author Rekhter explains, “PBS3 attaches isochorismic acid to glutamic acid resulting in the formation of the previously unknown compound isochorismate-9-glutamate. This highly unstable substance decomposes spontaneously into salicylic acid and by-product.”

Solving the riddle of how plants biosynthesise salicylic acid was a joint effort of the teams of Professor Ivo Feußner, Dr Marcel Wiermer and Professor Volker Lipka at the University of Göttingen together with the team of Professor Yuelin Zhang at the University of British Columbia, within the International Research Training Group “PRoTECT”.

Furthermore, it looks like this pathway applies across the plant kingdom. Feußner from the Department of Plant Biochemistry at the University of Göttingen says, “This research not only increases our understanding of how plants synthesise this hormone, but also opens up new opportunities to breed crops that are more resistant to disease. The important role of salicylic acid for plants in their battle against disease make these findings of fundamental importance for research areas such as plant immunity and therefore also food production.”

Wissenschaftliche Ansprechpartner:

Professor Ivo Feußner
University of Göttingen
Department for Plant Biochemistry
Justus-von-Liebig-Weg 11
37077 Göttingen, Germany
Phone: +49 551 39-25743
Email: ifeussn@uni-goettingen.de

Dr Marcel Wiermer
University of Göttingen
Research Group Molecular Biology of Plant-Microbe Interactions
Julia-Lermontowa-Weg 3
37077 Göttingen, Germany
Phone: +49 551 39-177846
Email: wiermer@uni-goettingen.de

Originalpublikation:

Dmitrij Rekhter et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science (2019). https://science.sciencemag.org/content/365/6452/498.abstract.

Thomas Richter | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-goettingen.de/

More articles from Life Sciences:

nachricht New image of a cancer-related enzyme in action helps explain gene regulation
05.06.2020 | Penn State

nachricht Protecting the Neuronal Architecture
05.06.2020 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>