Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants isolate themselves against Bacteria

29.05.2015

When plants notice harmful bacteria, they respond very quickly: They close the pores on their leaves which serve as loophole for the pathogens. A Würzburg research team has analysed this process.

Plants are continuously besieged by viruses, fungi and bacteria. This is the reason why immune responses have developed in the course of evolution with which they defend themselves against many pathogenic microorganisms. An international research team has now analysed an immune response which complicates the penetration of bacteria into the leaves.


Bacteria use open pores in order to get into the inside of the leave (A). If the plant notices the bacterial flagellin, the OST1 enzyme activates the ion channels SLAC1 and SLAH3, and the pores close

(Graphics: Rob Roelfsema)

There are many very small pores in the leaves that can open wide or close completely. Through these holes in their skin, plants regulate the vital exchange of air and water with the environment. However, the pores also harbour a risk: They are welcome loopholes for pathogenic bacteria through which they can enter into the plant.

What happens in the event of a bacterial infection on the leave pores, the stomata, has so far been virtually unknown. An international research team has just published new findings about this issue in the “New Phytologist” journal. The plant scientists Rainer Hedrich and Rob Roelfsema from the University of Würzburg form the core of the team. The molecular mechanisms for controlling the stomata have been their focus for many years in their study groups.

Injecting the bacterial protein flagellin into leaves

How do stomata respond to an infestation of bacteria? This is what Aysin Guzel Deger, currently a guest PhD student at the University of Würzburg, from the University of Mersin (Turkey), wanted to find out.

For this, she injected the bacterial protein flagellin into the leaves of the model plant Arabidopsis (Arabidopsis thaliana). This protein occurs in many bacteria. The plants obviously consider it dangerous and as a result respond very quickly: About 15 minutes after the injection they start to close their stomata. This is how they block the entry path of the bacteria.

The flagellin develops its effect on the guard cells which limit the stomata of the plant: Each leaf pore is lined by two cells and they ensure that the pore size can be changed. In cooperation with a team from Estonia, the Würzburg team found out exactly where the flagellin has an effect on the guard cells: “Through the OST1 enzyme it activates the ion channels SLAC1 and SLAH3. As a result the guard cells go limp and the pores close”, explains Roelfsema.

Flagellin activates the dry stress signal path

Interestingly, the enzyme and the two ion channels are also contributors when plants close their pores in the event of dryness. This way they reduce the loss of water to the environment, as Hedrich’s team already found out quite a while ago.

Dryness and bacterial pathogens therefore activate the same signal path in plants: In plant cultivation, this new finding could be used to catch two birds with one stone: “Cultivated plants with improved OST1 enzymes may at the same time be more resistant against dryness and against bacteria, says professor Hedrich. For farming, this is an exciting perspective, because dryness and pests are among the main factors that contribute to worldwide crop losses.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, published online on 30 April 2015, DOI: 10.1111/nph.13435

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

PD Dr. Rob Roelfsema, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86121, roelfsema@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>