Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nutrients are removed in oxygen-depleted regions of the ocean

03.08.2018

Kiel research team describes genetic and evolutionary mechanisms of nitrate reduction from foraminifera for the first time

In the course of global climate change, scientists are observing the increase of low-oxygen areas in the ocean, also termed oxygen minimum zones (OMZs). Large-scale OMZs exist, for example, in the Pacific off the coast of South America or in the Indian Ocean.


With a device for taking sediment samples, called multicorer, the researchers obtained sediment from the bottom of the Gullmar Fjord.

© Tal Dagan

Since little to no oxygen is present in these regions - depending on the depth of the water - organisms whose metabolisms is independent of oxygen have a distinct advantage. These organisms include some representatives of the foraminifera: unicellular, shell-forming microorganisms, which have a nucleus and thus belong to the eukaryotes.

Their life style involves a particular metabolic pathway termed anaerobic respiration. In the absence of oxygen, they convert nitrate present in the water into molecular nitrogen. This process called denitrification and it plays a central role in the global recycling of nitrogen – an essential element for the life processes of all organisms – in the ocean. In marine areas with a particularly low oxygen content, foraminifera are highly abundant.

There, they metabolise nitrate on a large scale and thus remove it from the global nutrient cycle. In this way, foraminifera make a significant contribution to the removal of nutrients in the OMZs. A research team from the Institute of General Microbiology at Kiel University (CAU), the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean” at the GEOMAR Helmholtz Centre for Ocean Research Kiel, and the Kiel Evolution Center (KEC) have now succeeded in describing the previously unknown denitrification process in foraminifera.

The researchers were able to demonstrate that Globobulimina turgida and the related species Globobulimina auriculata possess a unique, eukaryotic metabolic pathway for denitrification. Today (Thursday, August 2), the research team published a characterisation of the required genetic attributes of these foraminifera species for the first time in the renowned scientific journal Current Biology.

The research team collected sediment samples in the Gullmar Fjord in southern Sweden. Due to its special shape and the associated water stratification, the Fjord experiences a seasonal deoxygenation similar to the large oceanic OMZs. In the fjord, foraminifera live in the top few centimetres of the seabed.. The researchers were able to observe the microorganisms in laboratory, using a specially-developed infrastructure:

"In order to investigate the foraminifera in detail and because they are specialised for their particular environmental conditions, we had to artificially simulate the natural oxygen conditions at a depth of around 120 meters," emphasised Dr. Alexandra-Sophie Roy from the Genomic Microbiology working group at the CAU. Together with her colleague Dr. Christian Wöhle, she is lead author of the newly published study conducted in the framework of the SFB 754.

The researchers examined the entire genetic information of the foraminifera for clues about whether they are capable of denitrification independently, or whether symbiotic bacteria are responsible. It is already known that bacteria and fungi can perform denitrification, and therefore have the suitable genetic attributes. The researchers were thus searching the genome of the foraminifera for specific genes already known in bacteria and fungi.

"We discovered three protein-coding genes, which definitely do not come from symbiotic bacteria," highlighted Wöhle. Although we have not found all of the genes involved in nitrate conversion, the newly discovered genetic information is part of the foraminifera’s own genome. Their metabolism definitely distinguishes these marine microorganisms from all other eukaryotic organisms, underlined Roy and Wöhle.

This result is also supported by the ecological success of foraminifera in oxygen-depleted marine environment. Investigations of the OMZ off the Peruvian coast, for example, have shown that the microorganisms there play a key role in the nitrate cycle, and are found in high abundance of more than 500 individuals per cubic centimetre of sediment. It is speculated that foraminifera could achieved this dominance by evolutionarily acquiring the ability to perform complete denitrification.

A participation of symbiotic bacteria in the nitrate reduction can be excluded in Globobulimina species studied here, because the abundance of symbiotic bacteria is too low to explain the phenomenon. Therefore the eukaryotic microorganisms must be able to independently perform denitrification. In further research, the scientists aim to identify the missing denitrification genes in Globobulimina. They also want to clarify whether the findings obtained regarding certain species in a specific marine area are also applicable to other foraminifera from OMZs in general.

"A better understanding of how the genetic basis of denitrification evolved in different organisms provides us with an important piece of the puzzle, and one step further towards a bigger picture of the biogeochemical cycles in the ocean," emphasised Professor Tal Dagan, co-author of the study and head of the Genomic Microbiology research group at the CAU. Based on the evolution of the genes involved, we could better determine the geological origin of this nutrient cycle, and the extent of the role played by individual organisms, continued Dagan.

"In the context of global environmental change, a more accurate understanding of the conversion and distribution of elementary substances in the ocean is becoming increasingly important. With the new results, we make a contribution to better understanding the influence of climate change on the oxygen content-dependent nutrient cycles in the ocean," added Dr Joachim Schönfeld from the SFB 754, who is also involved in the study. So, for example, in future we could better estimate how changed environmental conditions will affect the nutrient supply, and thus the nutritional relationships between different creatures in the ocean, summarised Schönfeld.

Original publication:
Christian Wöhle, Alexandra-Sophie Roy, Nicolaas Glock, Tanita Wein, Julia Weissenbach, Philip Rosenstiel, Claas Hiebenthal, Jan Michels, Joachim Schönfeld, Tal Dagan (2018) “A novel eukaryotic denitrification pathway in foraminifera”. Current Biology, Published on August 2, 2018,
https://doi.org/10.1016/j.cub.2018.06.027

Photos are available to download:
www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/256-currbio-1.jpg

With a device for taking sediment samples, called multicorer, the researchers obtained sediment from the bottom of the Gullmar Fjord.
Credit: Prof. Tal Dagan

www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/256-currbio-2.jpg

Culture vessel where each well contain sterile sand and a single foraminifera individual.
Credit: Prof. Tal Dagan

www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/256-currbio-3.jpg

One of the two species of foraminifera investigated, Globobulimina turgida, is about 700 micrometers in size.
Credit: Jan Michels

Contact:
Prof. Tal Dagan
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5712
E-mail: tdagan@ifam.uni-kiel.de

Dr Christian Wöhle
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5744
E-mail: cwoehle@ifam.uni-kiel.de

Dr Alexandra-Sophie Roy
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5714
E-mail: sroy@ifam.uni-kiel.de

More information:
Genomic Microbiology (Dagan working group),
Institute of General Microbiology, Kiel University
www.mikrobio.uni-kiel.de/de/ag-dagan

Collaborative Research Center (SFB) 754 "Climate-Biogeochemistry Interactions in the Tropical Ocean", GEOMAR:
www.sfb754.de/de

Research centre “Kiel Evolution Center”, Kiel University:
www.kec.uni-kiel.de

Ocean Deoxygenation Conference, Public Talks on 5.9.2018,
Collaborative Research Center (SFB) 754:
https://conference.sfb754.de/event/1/page/15-public-event-teacher-workshop

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text/editing: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Prof. Tal Dagan
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5712
E-mail: tdagan@ifam.uni-kiel.de

Dr Christian Wöhle
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5744
E-mail: cwoehle@ifam.uni-kiel.de

Dr Alexandra-Sophie Roy
Genomic Microbiology,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-5714
E-mail: sroy@ifam.uni-kiel.de

Originalpublikation:

Christian Wöhle, Alexandra-Sophie Roy, Nicolaas Glock, Tanita Wein, Julia Weissenbach, Philip Rosenstiel, Claas Hiebenthal, Jan Michels, Joachim Schönfeld, Tal Dagan (2018) “A novel eukaryotic denitrification pathway in foraminifera”. Current Biology, Published on August 2, 2018, https://doi.org/10.1016/j.cub.2018.06.027

Weitere Informationen:

https://www.uni-kiel.de/en/details/news/how-nutrients-are-removed-in-oxygen-depl...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht How does the human brain fold?
03.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht New Method Refines Cell Sample Analysis
03.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 26AlF – the first detection of a radioactive molecule in space

The first unambiguous observation of a radioactive molecule, 26AlF, was made in the ancient nova-like object CK Vul (or Nova Vul 1670), which - most likely - is a stellar-merger remnant. The eruption of the object was observed between 1670-1672 in Europe. The interest in this object has been recently rejuvenated by the discovery of molecular gas of a very peculiar isotopic composition in the remnant.
The finding was announced by an international research team led by Tomasz Kamiński (CfA), including Karl Menten (MPIfR Bonn).

The variable star CK Vulpeculae (CK Vul) is known as the location of a stellar outbreak, a nova, which was observed by European astronomers in the 17th century...

Im Focus: Scientists create 'impossible' materials in simple way

Scientists from NUST MISIS and colleagues from the University of Bayreuth, the University of Münster (Germany), the University of Chicago (U.S.), and Linköping University (Sweden) have created nitrides, a material previously considered impossible to obtain. More amazing, they have shown that the material can be obtained using a very simple method of direct synthesis. Articles about the revolutionary research results have been published in Nature Communications and Angewandte Chemie International Edition.

Nitrides are actively used in superhard coatings and electronics. Usually, the nitrogen content in these materials is low, and it is therefore difficult to get...

Im Focus: World-first quantum computer simulation of chemical bonds using trapped ions

An international group of researchers has achieved the world’s first multi-qubit demonstration of a quantum chemistry calculation performed on a system of trapped ions, one of the leading hardware platforms in the race to develop a universal quantum computer.

The research, led by Cornelius Hempel and Thomas Monz, explores a promising pathway for developing effective ways to model chemical bonds and reactions using...

Im Focus: Growing brain cancer in a dish

For the first-time, researchers at IMBA- Institute of Molecular Biotechnology of the Austrian Academy of Sciences – develop organoids, that mimic the onset of brain cancer. This method not only sheds light on the complex biology of human brain tumors but could also pave the way for new medical applications.

Brain tumors are among the most aggressive and deadly cancers and a leading cause of cancer-related death in children and young adults.

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

 
Latest News

New Method Refines Cell Sample Analysis

03.08.2018 | Life Sciences

Investigating the Liliput effect with computer tomography

03.08.2018 | Earth Sciences

How nutrients are removed in oxygen-depleted regions of the ocean

03.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>