Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Noroviruses control their desire for sweets

21.03.2019

Researchers from the Institute of Chemistry and Metabolomics of the University of Lübeck discover a new mechanism allowing Noroviruses to switch off sugar binding. Key for these novel insights were NMR (Nuclear Magnetic Resonance) experiments. Development of vaccines as well as the search for antiviral substances will benefit from this discovery.

The scientific journal Nature Communications reports on these findings in its latest issue.
The researchers Alvaro Mallagaray and Robert Creutznacher of the group around Thomas Peters (Director of the Institute of Chemistry and Metabolomics) noticed peculiar spectral alterations during their NMR experiments with viral coat proteins.


Robert Creutznacher, Prof. Dr. Thomas Peters und Dr. Alvaro Mallagaray (v.l.n.r.; Foto: Dr. Thorsten Biet)

First, these observations were difficult to explain as, so far, no transformations of norovirus coat proteins had been detected in Lübeck or other laboratories worldwide.

The unexpected observation was only possible since in recent years the Lübeck researchers had succeeded in labeling norovirus coat proteins with non-radioactive isotopes in such a way that the NMR spectroscopic fingerprints of these proteins could be decoded almost completely.

With these fingerprints in hand, it is now possible to gain deep insights into the attachment of norovirus coat proteins to sugar structures on the surface of host cells or bacteria, present in the gut microbiota.

The attachment of Noroviruses to distinctive sugar chains, the so called histo blood group antiens (HBGAs), is considered as essential for successful infection and, therefore, is target of a number of studies, aiming at the development of antiviral agents specifically blocking the interaction between virus and host.

The cause of the observed spectral alterations emerged as a surprise from elaborate three-dimensional NMR experiments, so called HN(CO)CACB NMR experiments, when deciphering the protein fingerprints. The data indicated that an amino acid residue adjoining the sugar binding site undergoes a relatively rapid spontaneous transformation, effectively suppressing sugar binding.

Such so called post translational modifications are known but so far had not been associated with interactions of viral coat proteins with host cell factors or receptors.

The results from the Lübeck laboratory were confirmed by other groups as part of a collaboration within the DFG (Deutsche Forschungsgemeinsachft) funded research unit ViroCarb. The group of Charlotte Uetrecht from the Pette Institute in Hamburg delivered supporting evidence from mass spectrometry, and the group of Bärbel Blaum at the University of Tübingen contributed structural details of the altered sugar binding from crystallography experiments.

Analysis of gene sequences of Norovirus strains involved in currently prevalent epidemies shows that ca. 60% of all viruses have the potential to undergo this spontaneous post translational modification, modulating their interactions with host cells or bacteria. To date, it is not known if and how noroviruses benefit from this transformation, but unquestionably this discovery will impact the search for novel antivirals and the development of vaccines.

Wissenschaftliche Ansprechpartner:

Prof. Dr. rer. nat. Thomas Peters
Universität zu Lübeck
Telefon: +49 451 3101 3300
Fax: +49 451 3101 3304
E-Mail: thomas.peters@chemie.uni-luebeck.de

Originalpublikation:

https://www.nature.com/articles/s41467-019-09251-5

Weitere Informationen:

https://www.uni-luebeck.de/aktuelles/pressemitteilung/artikel/wie-noroviren-ihre...

Rüdiger Labahn | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>