Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How neural circuits drive hungry individuals to peak performance: The secret of motivation

26.09.2019

Success is no accident: To reach your goal you need perseverance. But where does the motivation come from? An international team of researchers led by scientists from the Technical University of Munich (TUM) has now identified the neural circuit in the brain of fruit flies which makes them perform at their best when searching for food.

The odor of vinegar or fruit lets fruit flies walk faster. To reach the food, they run until exhaustion. But despite their efforts, they do not get any closer to their goal: In the set-up at the laboratory of the TUM School of Life Sciences Weihenstephan the upper bodies of the tiny flies are fixed in place and the flies are running without getting anywhere.


Prof. Ilona C. Grunwald Kadow choses drosophila flies for her motivation experiments.

Image: Astrid Eckert / TUM


Set-up for measuring the motivation of fruit flies.

Image: A. Eckert / TUM

With the movement of their legs they are turning a ball which is floating on an air cushion. The turning speed shows neurobiologist professor Ilona C. Grunwald Kadow how much effort the fruit fly is putting into finding food.

“Our experiments show that hungry individuals keep increasing their performance – they run up to nine meters per minute. Fruit flies which are full give up much faster”, the researcher reports. “This proves that even simple organisms show stamina and perseverance – up to now, these qualities were thought to be reserved for humans and other higher organisms.”

A neural circuit controls perseverance

Together with Julijana Gjorgjieva, Professor for Computational Neuroscience at the Technical University of Munich and group leader at the Max-Planck-Institute for Brain Research in Frankfurt, as well as an international and interdisciplinary team of researchers, Grunwald Kadow has now identified a neural circuit in the brain of the small flies, which controls this kind of perseverance.

It is not a coincidence that the researchers investigated the motivation of fruit flies. “The brains of these flies have a million times fewer nerve cells than human brains. This makes it a lot easier to find out what an individual neuron does and how”, the professor explains. “In this way, we are able to understand the principles of neural circuits which also form the basis for the function of complex brains.”

The power of neurons

To identify the neural circuit which is responsible for motivation, the team used various techniques: First, a mathematical model was created which simulates the interaction of external and internal stimuli – for example the odor of vinegar and hunger.

In the next step, the neuroscientists of TUM identified the network of interest in the brain of the fruit fly in cooperation with colleagues in the USA and Great Britain. This was achieved with the help of electron microscopy as well as in-vivo imaging and behavioral experiments.

The result: The neural circuit of interest is located in the learning and memory center of the fly brain. It is controlled by the two neurotransmitters dopamine and octopamine, which is related to the human noradrenaline. Dopamine increases the activity of the circuit, i. e. increases motivation; octopamine reduces the willingness to make an effort.

“Since these neurotransmitters and the corresponding circuits also exist in the brains of mammals, we assume that similar mechanisms decide whether to continue or to stop”, concludes the neurobiologist. In the long term, the researchers hope that their findings will help to understand why the interaction of neurons and messenger substances in the brain, for example, in addictions gets out of control.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ilona Grunwald Kadow

Technical University of Munich
TUM School of Life Sciences
ZIEL – Institute for Food and Health

Liesel-Beckmann-Str. 4, 85354 Freising, Germany
Tel.: +49 8161 71 2440 – E-Mail: ilona.grunwald@tum.de

Originalpublikation:

Sercan Sayin, Jean-Francois De Backer, K.P. Siju, Marina E. Wosniack, Laurence P. Lewis, Lisa-Marie Frisch, Benedikt Gansen, Philipp Schlegel, Amelia Edmondson-Stait, Nadiya Sharifi, Corey B. Fisher, Steven A. Calle-Schuler, J. Scott Lauritzen, Davi D. Bock, Marta Costa, Gregory S.X.E. Jefferis, Julijana Gjorgjieva, Ilona C. Grunwald Kadow
A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila
Neuron 104, 1–15, November 6, 2019 – DOI: 10.1016/j.neuron.2019.07.028
https://doi.org/10.1016/j.neuron.2019.07.028

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35707/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

Further reports about: flies fruit fly individuals neural circuit neurons neurotransmitters octopamine

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>