Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much nature is lost due to higher yields?

10.04.2019

UFZ study reveals link between increasing yields and biodiversity

The exploitation of farmland is being intensified with a focus to raising yields. The degree to which yields actually increase as a result and the extent of the simultaneous loss of biological diversity have to date been under-researched factors.


To determine the responses of species richness and yield to conventional land-use intensification, we conducted a global meta-analysis. Across all production systems (food, fodder, wood), intensification increases yield (+20.3% / red arrow), but also leads to a loss of species (-8.9% / blue arrow).

Credit: UFZ

An international team of scientists led by the UFZ has now evaluated data from worldwide research in which both yield and biodiversity were examined before and after intensification measures.

The findings of this meta-analysis have now been published in the journal Global Change Biology.

Around 80 percent of land area in Europe is used for settlement, agriculture and forestry. In order to increase yields even further than current levels, exploitation is being intensified. Areas are being consolidated in order to cultivate them more efficiently using larger machines. Pesticides and fertilisers are increasingly being used and a larger number of animals being kept on grazing land. "Such measures increase yield but, overall, they also have negative impacts on biodiversity," says UFZ biologist Dr. Michael Beckmann.

"This is because even agricultural areas offer fauna and flora a valuable habitat - which is something that is frequently not sufficiently taken into consideration." In addition, previous studies have mostly examined the effects of intensified land use only from one perspective: either with regard to the increase in yield or the loss of biodiversity.

"We unfortunately still know far too little about the relationship between the two and what price nature ultimately has to pay for increases in yield," says Beckmann. In the recent study, the team of scientists aimed to address this knowledge gap.

To this end, the researchers sifted through some 10,000 topically relevant studies looking for those that collected measurement data for yield and biodiversity both before and after intensification measures. "The majority of the studies fell through the net in this respect. A mere 115 studies actually measured both parameters for the same areas, making them relevant for our purposes," says Beckmann.

The 449 agricultural areas examined in these studies are, however, distributed around the globe, are located in different climatic zones and the time they have been in use varies greatly. To be able to use these studies for their analysis, the researchers developed a mathematical model that takes account of these differences and renders the data comparable.

They then summarised the respective yield increases and biodiversity losses. "We were able to demonstrate that, on average, intensification of land use gave rise to an increase in yield of 20 percent but this is, at the same time, associated with a nine percent loss of species," says Beckmann.

To obtain a more detailed insight into the impact of intensification measures, the researchers divided the agricultural areas into three classes of intensity - low, medium and high. Proceeding in this way made it possible to compare the results of all three agricultural production systems - arable land, grasslands and forest - with each other. Areas of medium intensity of use demonstrated the highest increase (85 percent) in yield following intensification measures.

But they also had the greatest loss of species (23 percent). In contrast, areas that already had high intensity of use did not reveal any significant loss of species but still showed an increase in yield of 15 percent.

"Initially, this sounds excellent: greater yield without loss of species," says Beckmann. "But where there was not much biodiversity left to start with due to highly intense usage, there is, of course, also not much that can be lost. In such cases, the critical point may have already been passed."

In a comparison of the effects of intensification measures on arable land, grasslands and forests, forests performed best with regard to lower species loss. The study findings indicate that intensified land use may, in individual cases such as timber production, also lead to greater yields without any detrimental effect on biodiversity.

The study makes clear how great the impact of the intensity of agricultural production can be for the protection of biodiversity. It reveals general trends and identifies gaps in our knowledge. Concrete recommendations for action in specific regions cannot be derived from the study, however.

"Further research is necessary in order to understand the conditions under which land usage is linked to a low or an especially high risk to biodiversity," says Michael Beckmann. "This is the only way to ensure that we are able to apply intense land use practices and protect biodiversity at the same time. After all, species conservation can and must also take place in our cultivated landscapes."

Publication:
Beckmann, M. et al.: Conventional land-use intensification reduces species richness and increases production: A global meta-analysis; Global Change Biology (2019) http://dx.doi.org/10.1111/gcb.14606

To determine the responses of species richness and yield to conventional land-use intensification, we conducted a global meta-analysis. Across all production systems (food, fodder, wood), intensification increases yield (+20.3% / red arrow), but also leads to a loss of species (-8.9% / blue arrow).
Credit: UFZ


Contact
Dr Michael Beckmann
UFZ Department of Landscape Ecology
michael.beckmann@ufz.de


Contact Media
Susanne Hufe
UFZ press office
Tel. +49 - 341 - 235-1630
www.ufz.de/index.php?en=640


Address
Helmholtz Centre for Environmental Research - UFZ
Permoserstraße 15
04318 Leipzig
Germany
www.ufz.de

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, ecosystems of the future, environmental technologies and biotechnologies, the effects of chemicals in the environment, modelling and social-scientific issues. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the Federal Government, Saxony and Saxony-Anhalt.
www.ufz.de


The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Matter; and Aeronautics, Space and Transport. With some 39,000 employees in 19 research centres, the Helmholtz Association is Germany’s largest scientific organisation.
www.helmholtz.de

UFZ press office | Helmholtz Centre for Environmental Research - UFZ

More articles from Life Sciences:

nachricht Protein linked to cancer acts as a viscous glue in cell division
08.07.2020 | Rensselaer Polytechnic Institute

nachricht Enzymes as double agents: new mechanism discovered in protein modification
08.07.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>