Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Invasive Plants Influence an Ecosystem

28.07.2016

A research team uses the example of the acacia to show how interaction between native and invasive species varies

Acacia longifolia, a species of acacia from the Fabacean family that is native to Australia, was initially cultivated in Portugal as a means of securing sand dunes and is now spreading uncontrollably – with varying impact on native species.


Foto: Peter Burai

Since the plant can use nitrogen from the air on account of its symbiotic relationship with bacteria on its roots, and since it also grows rapidly and produces a lot of biomass, it enriches the naturally nutrient-poor dune ecosystem with nitrogen, leading to an undesirable fertilization effect.

In addition, it consumes more water than native species. The ecologists Prof. Dr. Christiane Werner, Christine Hellmann, and Dr. Jens Oldeland have developed a new approach published in the journal PLOS ONE for identifying the areas in which the acacia interacts with native species. The team determined that the invasive species has a negative effect on the development of some native species, while it has no effect on others and even causes several species to grow better.

The interactions between plants and their living and non-living environment has a decisive impact on the structure and function of ecosystems. To determine the strength and the spatial zone of influence of such interactions, the research team uses stable isotopes – heavy, non-radioactive forms of elements. The frequency with which these isotopes occur in materials in comparison to the much more common light isotopes can vary over space. The ratio of stable isotopes can therefore provide information on where and how a material originated.

So-called “isoscapes,” a portmanteau of “isotope” and “landscape,” represent in map form how isotopes are distributed in a landscape. The team used isoscapes based on the leaf material of native species to show where the proportion of nitrogen fixed by the acacia is high and where the invasive species influences the growth of other species – whether positively due to additional nitrogen or negatively due to competition for water. A dwarf shrub from the Ericaceae family, for example, exhibits greatly increased nitrogen concentrations and more efficient photosynthesis in a large radius surrounding acacia, while a stone pine uses only very small amounts of the additional nitrogen. A dwarf shrub from the Fabacean family, on the other hand, which can also use fixed atmospheric nitrogen, is not influenced by the acacia at all.

The results indicate that the interaction between the acacia and native plants is species-specific. In addition, the influence varies depending on the amount of nitrogen or water available to the species. In order to use this information to make a map integrating these various aspects, the scientists conducted a cluster analysis. This statistical method finds subgroups in the sampled area that exhibit a similar combination of the measured values, allowing them to be interpreted as zones of influence. The goal of these analyses is to better describe, elucidate, and understand the complex relationships and dynamics governing natural ecosystems.

Christiane Werner is a professor of ecosystem physiology at the University of Freiburg’s Faculty of Environment and Natural Resources. Her doctoral student Christine Hellmann conducts her research at the University of Bielefeld, and Jens Oldeland is a research assistant at the University of Hamburg.

Original publication:
Hellmann, Christine/Werner, Christiane/Oldeland, Jens: A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion. In: PLOS ONE.
http://dx.plos.org/10.1371/journal.pone.0159403

Contact:
Prof. Dr. Christiane Werner
Faculty of Environment and Natural Resources
University of Freiburg
Phone: +49 (0)761/203-8303
E-Mail: christiane.werner@cep.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-28.113-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

nachricht New findings help to better calculate the oceans’ contribution to climate regulation
15.11.2018 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Putting food-safety detection in the hands of consumers

15.11.2018 | Information Technology

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018 | Life Sciences

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>