Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How insects decide to grow up

27.01.2017

Scientists discover key mechanism that controls when fruit flies sexually mature

Like humans, insects go through puberty. The process is known as metamorphosis. Examples include caterpillars turning into butterflies and maggots turning into flies.


Image of a maggot (left); the steroid producing cells with the maggot brain (middle); and an expanded image of the steroid producing cells (right). Note large nuclei (dense white area) of steroid producing cells, which are labeled with a green fluorescent marker.

Credit: UC Riverside

But, it has been a long-standing mystery as to what internal mechanisms control how insects go through metamorphosis and why it is irreversible.

Now, a team of scientists, led by an assistant professor at the University of California, Riverside, has solved the mystery. They also believe the findings, which were just published in an early version in the journal PLOS Genetics, could be applied to mammals, including humans. The final version of the paper will be published Feb. 8.

Using the model organism fruit flies, the researchers found that the amount of DNA in the fruit fly controls the initial production of steroid hormones, which signal the start of metamorphosis.

More specifically, the cells that produce steroid hormones keep duplicating their DNA without cell division, making their nuclei huge. The team found that this amount of DNA in steroid hormone-producing cells is a critical indicator of their juvenile development, and it even determines when the insects get into metamorphosis.

Naoki Yamanaka, an assistant professor of entomology at UC Riverside, likened the accumulation of DNA to rings found inside trees that are used to date trees.

"The amount of DNA is like an internal timer for insect development," Yamanaka said. "It tells the insect, 'OK, I will grow up now.'"

Their finding explains, for the first time, why insect metamorphosis, just like human puberty, is an irreversible process. It is irreversible since DNA duplication cannot be reversed in cells. Once the cells increase the amount of DNA and start producing steroid hormones, that is the point of no return; they cannot go back to their childhood.

The findings could have multiple applications. In the short term, they could be used to help control agricultural pests by manipulating their steroid signaling pathways. They could also be used to aid beneficial insects, such as bees.

In the long term, the findings could also be used to develop better ways to treat diseases in humans related to sexual maturation, since human puberty is also controlled by steroid hormones, just like insects. The results may also aide future studies on steroid-related diseases such as breast cancer, prostate cancer, and menopause-related symptoms.

Yamanaka will continue this research by focusing on other insects, such as bumblebees and mosquitos, to see if they have a similar internal timer.

###

The PLOS Genetics paper is called "Nutrient-Dependent Endocycling in Steroidogenic Tissue Dictates Timing of Metamorphosis in Drosophila melanogaster."

In addition to Yamanaka, the co-authors are Yuya Ohhara, of the University of Shizuoka in Japan, who formerly worked in Yamanaka's lab at UC Riverside, and Satoru Kobayashi, of the University of Tsukuba in Japan.

Media Contact

Sean Nealon
sean.nealon@ucr.edu
951-827-1287

 @UCRiverside

http://www.ucr.edu 

Sean Nealon | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>