Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How gerbils orient in the light of the setting sun

22.01.2015

A light brown remains light brown: For gerbils, the fur color of their conspecifics appears identical under different lighting conditions. The ability of color constancy in rodents has been demonstrated for the first time by Munich neurobiologists. The findings are published in the current issue of the Journal of Vision.

A green apple is green, but the green is not always the same. In varying light conditions—like at sunset—the spectrum of the light that is reflected by the fruit and falls on our retina, changes. Nevertheless, we continue to perceive the color of the apple as green because the human brain compensates for the influences of illumination by evaluating the color and brightness composition across the entire visual field.


A dark-colored gerbil (figure A, top right) recognizes its dark fellow, although due to the shadow the fur of the light brown animal (bottom left) has a more similar spectral composition (figure B).

Copyright: Association for Research in Vision and Ophthalmology, 2015

This capacity is known as color and brightness constancy and is important for object recognition. Researchers at the Bernstein Center Munich and the LMU Munich, led by Kay Thurley and Thomas Wachter, have now investigated whether rodents also possess this remarkable perceptual ability.

In the study, the researchers showed gerbils colored patches on different colored backgrounds. The animals were looking at a screen while sitting on a sphere that worked like a treadmill. They were thus able to virtually move towards the stimuli and select one of it as response.

During the experiment, half of the animals had to identify the object in which the patch appeared more greenish than its background. The other animals had to identify the object they perceived as bluish compared to its background. When the rodents gave the correct answer, they received a food reward.

"The gerbils reliably recognized the correct patches despite varying color compositions across the experimental trials," explains Thomas Wachtler. Hence, under different lighting conditions the rodents consistently perceive a green apple or a brown fur as green or brown, respectively.

Moreover, they also perceive the brightness of an object as constant, as the researchers demonstrated in another experiment. Gerbils are thus the first rodents shown to have the ability of color and brightness constancy. The result suggests that other animals may possess this perceptual ability, too.

"For gerbils, which are diurnal and crepuscular animals, the ability to accurately identify objects despite changing lightning conditions is essential for survival. They orient using their sense of vision to forage or recognize conspecifics," says Kay Thurley, main author of the study. The result has significant implications for neurobiology: "Gerbils are a popular animal model in auditory neuroscience. But in contrast to other rodents, gerbils also have well developed vision, making these rodents especially suitable for experiments in virtual realities," Thurley says.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
PD Dr. Thomas Wachtler
LMU Munich
Department Biology II
Großhaderner Straße 2
82152 Martinsried
Tel: +49 (0)89 2180 74810 

Email: wachtler@bio.lmu.de

Dr. Kay Thurley
LMU Munich
Department Biology II
Großhaderner Straße 2
82152 Planegg-Martinsried
Tel: +49 (0)89 2180 74823
E-Mail: thurley@bio.lmu.de

Original publication:
C. Garbers, J. Henke, C. Leibold, T. Wachtler & K. Thurley (2015): Contextual processing of brightness and color in Mongolian gerbils. Journal of Vision, 15(1), 1 – 13.
doi: 10.1167/15.1.13

Weitere Informationen:

http://www.bccn-munich.de/people/kay-thurley Webpage Kay Thurley
http://neuro.bio.lmu.de/research_groups/res-wachtler_th Webpage Thomas Wachtler
http://www.uni-muenchen.de LMU Munich
http://www.bccn-munich.de Bernstein Center Munich
http://www.nncn.de/en National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>