Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How frogs' tongues become sticky

27.11.2018

Complex techniques that were used to analyze the surface interface between frog tongue and prey, have revealed protein reordering in response to tongue retraction.

Frogs' capture their prey with the sticky mucus covering their tongues, but this mucus isn't inherently adhesive. Frog mucus is thought to be pressure-sensitive, with tongue retraction strain triggering adhesion.


The horned frog lurks for its prey, halfway entrenched.

Foto/Copyright: Thomas Kleinteich


The new microscopy techniques show different chemical compositions on the surfaces of frog tongues.

Foto/Copyright: Joe Baio

A research team from Oregan State University, Aarhus University and Kiel University has now observed mucus stuck to prey to form fibrils, leading to the hypothesis that glycosylated mucin proteins are reordered by tongue retraction.

Understanding the chemical mechanism of this process can inform design of biomimetic materials, and so the scientists have used new techniques to examine the surface chemistry of frog tongues. They published their results this week in Biointerphases.

"We are able to take a chemical image of the frog tongue print and then look at the outer four to five nanometers of the surface. Our techniques are really surface sensitive, and that's where we think most of the action takes place," said co-author Joe E. Baio, whose group was involved in developing the near-edge x-ray absorption fine structure (NEXAFS) microscopy techniques used in this study.

NEXAFS and sum frequency generation of vibrational spectra enabled analysis of the interfacial chemistry of 'mucus prints'. These prints were gathered by the Group of Professor Stanislav Gorb from Kiel University, who also inspired the study. They tempted horned frogs into launching their tongues at crickets cunningly placed behind glass microscope slides.

„Afterwards we analysed these prints chemically. This way we can explain the physical-chemical processes on frog tongues for the first time and futher contribute to the understanding of the pressure sensitivity of the mucus", says Gorb.

The group found that the secondary structures of frog tongue mucins are randomly arranged, but upon tongue retraction, molecules align into well-ordered fibrils. With hydrophobic groups orientated towards the slide surface and hydrophilic groups towards the mucus bulk. "The physical input changes the chemistry of the mucus and that's how it turns the glue on," said Baio.

Next, the team consisting of zoologists, chemists and physicists wants to find the specific mucin sequence in order to replicate the inherent reversibility inartificial pressure-sensitive adhesives.

Photos are available to download:
https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/372-frosch...
Capture: The horned frog lurks for its prey, halfway entrenched.
Foto/Copyright: Thomas Kleinteich

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/372-frosch...
Capture: The new microscopy techniques show different chemical compositions on the surfaces of frog tongues.
Foto/Copyright: Joe Baio

Contact:
Professor Stanislav N. Gorb
Institute of Zoology of Kiel University
Telephone: 0431/880-4513
sgorb@zoologie.uni-kiel.de
http://www.uni-kiel.de/zoologie/gorb/topics.html

Julia Siekmann
Science Communication Kiel Nano, Surface and Interface Science (KiNSIS)
Tel. 0431-880-4855
jsiekmann@uv.uni-kiel.de
http://www.kinsis.uni-kiel.de

Details, which are only a millionth of a millimetre in size: this is what the priority research area "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between physics, chemistry, engineering and life sciences, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result.

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Louisa Cockbill, AIP, Julia Siekmann, CAU Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355 E-Mail: presse@uv.uni-kiel.de, Internet: http://www.uni-kiel.de, Twitter: http://www.twitter.com/kieluni, Facebook: http://www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Professor Stanislav N. Gorb
Institute of Zoology of Kiel University
Telephone: 0431/880-4513
sgorb@zoologie.uni-kiel.de
www.uni-kiel.de/zoologie/gorb/topics.html

Originalpublikation:

Source: "The Surface Chemistry of the Frog Sticky-Tongue Mechanism," by J. E. Fowler, Thomas Kleinteich, Johannes Franz, Cherno Jaye, Daniel A. Fischer, Stanislav Gorb, Tobias Weidner and Joe E. Baio, Biointerphases(2018).
https://doi.org/10.1116/1.5052651

Weitere Informationen:

https://www.uni-kiel.de/en/details/news/how-frogs-tongues-become-sticky/

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>