Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How experience may lead to misperception

23.04.2015

Distance, volume, brightness or duration—when judging magnitudes, we make systematic errors. A new model of Munich researchers combines two competing classical theories of magnitude estimates and attributes prior experience to play an important role. The study has been published in the current edition of the journal Trends in Cognitive Sciences.

How long is the way from the city hall to the train station? When we estimate distances, something curious happens: short distances seem longer, and long distances shorter than they really are. Similar biases occur during judgments of volume, brightness or time.


When judging distances, short distances seem longer than they really are. To explain this estimation bias, Munich neuroscientists have developed a new theoretical model.

Copyright: Mareike Kardinal / Bernstein Coordination Site, 2015

Psychologists call this phenomenon Vierordt’s law. Its independence of the involved sensory systems suggests that our brain possesses universal principles for the assessment of physical quantities. However, where do the characteristic estimation biases stem from? In collaboration with colleagues from Zurich, neuroscientists at the Bernstein Center Munich and the LMU Munich provide a new explanatory model, in which previous experience holds an important role.

“Our approach is based on probability theory and allows to reinterpret and combine two seemingly contradictory classic theories,” explains Stefan Glasauer, one of the authors of the study. The first theory of magnitude estimation is the Weber-Fechner law proposed in 1860. Some 100 years later, Stanley Smith Stevens introduced a power law and asserted that it was incompatible with the Weber-Fechner law.

This opinion is now disproved: “Using Bayes’ theorem from classical probability theory, both theories can be integrated into a new model,” Glasauer says.

In contrast to the previous approaches, the new model of the brain researchers also takes into account how prior knowledge affects the judgment of physical quantities. “We automatically gain experience with each magnitude estimation. This knowledge certainly affects subsequent estimates and is one of the causes leading to systematic estimation biases,” Glasauer explains.

In the process, learning occurs unconsciously and requires no feedback on the success of the assessment. “We hope that our approach will serve to better understand the neurobiological mechanisms of magnitude judgments,” Glasauer concludes.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology and Center for Sensorimotor Research
Feodor-Lynen-Str. 19
81377 Munich (Germany)
Tel: +49 (0)89 4400-74839
Email: sglasauer@lmu.de

Original publication:
F. H. Petzschner, S. Glasauer & K. E. Stephan (2015): A Bayesian perspective on magnitude information. Trends in Cognitive Sciences, 19(5), 285-293.
doi: 10.1016/j.tics.2015.03.002

Weitere Informationen:

http://www.bccn-munich.de/people/scientists-2/stefan-glasauer Stefan Glasauer
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | Nationales Bernstein Netzwerk Computational Neuroscience

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>