Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do fishes perceive their environment?

03.05.2017

Fishes perceive changes in water currents caused by prey, conspecifics and predators using their lateral line. The tiny sensors of this organ also allow them to navigate reliably. However, with increasing current velocities, the background signal also increases. Scientists at the University of Bonn have now created a realistic, three-dimensional model of a fish for the first time and have simulated the precise current conditions. The virtual calculations show that particular anatomical adaptations minimize background noise. The results are now being presented in The Journal of the Royal Society Interface.

The ide (Leuciscus idus) is a fish that inhabits the lower stretches of slow-flowing rivers. Like most fishes, it can perceive the current using its lateral line. The mechanoreceptors of this organ are distributed over the surface of the entire body, which is why the organ provides a three-dimensional image of the hydrodynamic conditions.


In this image generated using micro-computed tomography, the blue dyed lateral lines of the ide (Leuciscus idus) are clear to see.

Source: Dr. Hendrik Herzog


Dr. Hendrik Herzog (left) and Dr. Alexander Ziegler from University of Bonn.

Photo: Dr. Andreas Kroh

Fishes can thus also find their way around themselves in the dark and identify prey, conspecifics, or predators. The recently retired zoologist Prof. Horst Bleckmann from the University of Bonn has spent many years researching the sensitive organ and has used it as inspiration for technical flow sensors in order to, for instance, identify leakages in water pipes.

First realistic three-dimensional computer model

The scientists Dr. Hendrik Herzog from the Institute of Zoology and Dr. Alexander Ziegler from the Institute of Evolutionary Biology and Ecology at the University of Bonn have now entered a new dimension of research into the lateral line in fish: they created the first realistic, three-dimensional computer model of the lateral line system, which they used to calculate the precise flow conditions of the surrounding water.

“We concentrated on the head of the ide, because the lateral line of the fish has a particularly complex form there,” reports Dr. Herzog.

This organ has two different types of sensors. Some protrude like small bumps from the surface of the fish’s skin and the water flows directly over them. Others sit in canals that are submerged into the cranial bone and are connected to the water via small pores. “If prey, such as a freshwater shrimp, is close by, the local water current and pressure conditions change,” explains Dr. Ziegler. The fish registers this with its many sensors. “However, until now, the actual function of such different types of current measurement had not been clarified conclusively.”

Both researchers received active support from Birgit Klein from the Westphalian University of Applied Sciences. In her bachelor thesis at the Institute of Zoology, the current master student compared various methods of 3D reconstruction. She took around 350 photos of the head of the ide from various angles and used them to produce a 3D model of the fish surface. She had dyed the channels and sensors of the lateral line beforehand, which is why the structures in the model can be clearly identified. She then optimized the dataset by digitizing the fish head using a much higher-resolution laser scanning procedure.

This created a realistic image of the fish surface, but the inside of the animal was not recorded in this way. This is why the researchers used a micro-computed tomography scanner as the third method. A contrast agent allowed the soft tissue to be shown even when using this X-ray technique. At the end, data from all three techniques flowed into the realistic model of the lateral line. The zoologists thus simulated various current conditions and calculated the hydrodynamic signals to the various sensors.

A strong current is a challenge for the fish, as the background noise for the sensors is particularly great. Nevertheless, the fish can precisely perceive its environment even with high water speeds. As the researchers show with their calculations, depressions ensure that the current is significantly reduced for the bump-like sensors that sit on the surface of the skin. “The relative signal strength of, for instance, prey organisms thus becomes greater,” explains Dr. Herzog. For the sensors in the channels, it was shown that certain sections of the lateral line are particularly sensitive to the respective current strength due to different channel diameters.

Bio-inspired application: improved navigation of underwater robots

“Using our methodical approach, comparative anatomical studies between different fish species with an especially high level of detail will be possible in the future,” reports Dr. Ziegler. His colleague sees bio-inspired applications in the foreground: "The knowledge from such 3D models of fish may also make it possible to significantly improve the autonomous navigation of underwater robots using flow sensors,” suggests Dr. Herzog.

Publication: Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics, The Journal of the Royal Society Interface

Media contact:

Dr. Hendrik Herzog
Institute of Zoology
University of Bonn
Tel. +49 (0)228/735490
E-mail: hendrik.herzog@uni-bonn.de

Dr. Alexander Ziegler
Institute of Evolutionary Biology and Ecology
University of Bonn
Tel. +49 (0)228/735758
E-mail: aziegler@evolution.uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1098/rsif.2016.0898 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>