Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How decisions unfold in a zebrafish brain

17.01.2020

Researchers at the Rockefeller University and the Research Institute of Molecular Pathology (IMP) in Vienna, alongside collaborators, were able to track the activity of individual neurons in the entire brain of zebrafish larvae, thus opening an opportunity to observe decision-making processes in unprecedented temporal and spatial resolution.

Some things we do appear almost automatic, such as opening the fridge when feeling hungry. Although such decisions do not seem to take much thought, they are in fact generated by millions of neurons and numerous interactions among several brain regions - a complex, dynamic system.


Zebrafish (Danio rerio)

IMP

Zebrafish have now opened an opportunity to observe decision-making processes in unprecedented temporal and spatial resolution.

Researchers from the labs of Alipasha Vaziri at The Rockefeller University and the Research Institute of Molecular Pathology (IMP), alongside collaborators, tracked the activity of individual neurons in the entire brain of zebrafish larvae to reconstruct the unfolding of neuronal events as the animals repeatedly made “left or right” choices.

The resulting frame-by-frame view of a decision in the making was so detailed that, ten seconds before the fish responded, the researchers could predict what their next move would be and when they would execute it. They reported their findings in the current issue of the journal Cell.

Following a decision

Understanding how a brain makes decisions involves tracking how neurons across multiple brain regions respond and cooperate. Scientists have long been stuck between two options: They can either closely observe the firing of only a subset of neurons, which limits their view of the whole picture, or look at the whole brain activity while averaging the data over multiple trials to reduce noise. Averaging, however, leads to loss of some of the details.

“We wanted to understand how decisions unfold on a trial-by-trial basis,” says Alipasha Vaziri, head of the Laboratory of Neurotechnology and Biophysics at The Rockefeller University and IMP Adjunct Investigator. To do so, the team paired advanced statistical methods with their recently developed imaging technique, light field microscopy, which enables simultaneous tracking of the activity of every neuron in the brains of zebrafish larvae.

But before subjecting the fish to experiments, the scientists had to teach them a new behaviour, one that was not merely reflexive, but goal-oriented. The goal, from the fish's perspective, was to get relief from heat.

The researchers slightly warmed the water around the fish using a laser, switching off the laser only when the fish made a tail movement to the right. After about 15 repeats, the fish had mastered the trick: They responded to their warming surroundings about 20 seconds after the laser came on. About 80 percent of the time, the fish remembered to flip their tail in the correct direction.

During the interval after the laser was turned on and before the fish made a movement, the researchers tracked the activity state of about 5,000 of the most active neurons across the entire brain. They then identified which activity patterns reflected the brain sensing the heat or moving the tail, and which appeared decision related.

Particularly, they found that about ten seconds before the fish made a movement, its brain patterns differed based on whether the fish was going to make a correct or an incorrect turn.

Having this information, the researchers could look at the brain state of any one little fish, and 80 percent of the time guess correctly what the fish was about to do: They were able to predict the specific time at which the animals would initiate the turn, and its direction, in each trial.

An unexpected player

Having found which clusters of neurons corresponded to different aspects of the task, the researchers then mapped the neurons onto their anatomical regions. “This allowed us to see what brain regions were involved in what aspects of the task as the decision unfolded in each trial,” Vaziri says.

Several brain regions participated in transforming sensory information into decision and action, but one region stood out: the cerebellum. The rate of activity of neurons in this brain part determined the exact timing of the tail movement.

“This was surprising,” Vaziri says, adding that a few studies in recent years have pointed in the same direction. “I think we might find more generally that the cerebellum is involved in more cognitive brain functions than what we have traditionally thought.”

Wissenschaftliche Ansprechpartner:

Alipasha Vaziri
The Rockefeller University
Research Institute of Molecular Pathology
vaziri@rockefeller.edu

Originalpublikation:

Qian Lin, Jason Manley, Magdalena Helmreich, Friederike Schlumm, Jennifer M. Li, Drew N. Robson, Florian Engert, Alexander Schier, Tobias Nöbauer, and Alipasha Vaziri: “Cerebellar neurodynamics predict decision timing and outcome on single-trial level." Cell, 16 January 2020.

Dr. Heidemarie Hurtl IMP Communications | idw - Informationsdienst Wissenschaft
Further information:
http://www.imp.ac.at

Further reports about: IMP Molekulare Pathologie Zebrafish brain regions neurons zebrafish larvae

More articles from Life Sciences:

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

The spin state story: Observation of the quantum spin liquid state in novel material

09.07.2020 | Physics and Astronomy

New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH

09.07.2020 | Information Technology

Stress testing 'coral in a box'

09.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>