Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Chlamydia gain access to human cells

31.10.2019

Publication in Nature Communications

Chlamydia are bacteria that can infect human and animal cells. Human health is particularly affected by Chlamydia pneumoniae (Cpn) and Chlamydia trachomatis. Chlamydia pneumoniae attacks the upper and lower respiratory tract and causes bronchitis, sinusitis and chest infections. Importantly, infections with this bacterium are associated with many chronic diseases such as chronic bronchitis, asthma, atherosclerosis and Alzheimer's disease.


A Chlamydia pneumoniae cell uses its surface protein LIPP (red) to bind to the outside of a human cell. The LIPP protein permeates the cell membrane and transports the cell's own phospholipid PS (green) from the interior to the exterior. Localisation of the PS molecule on the outer membrane leaflet helps the Chlamydium to enter the viable human cell. In the event of chlamydial infection, the PS on the outer membrane thus fulfils a different function than in dying human cells.

Credit: HHU / Jan Galle

Chlamydia multiply only inside of human cells. To do so, they first have to bind to the host cell from the outside and then enter the cell in a second step. Understanding these two mechanisms is one of the key research areas at the Institute of Functional Genome Research of Microorganisms headed up by Prof. Dr. Johannes Hegemann.

Each cell is surrounded by a membrane known as the 'plasma membrane'. This membrane comprises lots of individual molecules called 'phospholipids'. There are also membrane proteins, which are responsible for transporting materials between the cell interior and the outer environment as well as for intercellular communication. One component of the membrane is the phospholipid phosphatidylserine, or 'PS' for short. In healthy cells, it is located on the inner membrane leaflet, but if the cell is diseased, it is transported to the external membrane leaflet. Here, PS serves as a marker for programmed cell death (apoptosis).

In the working group of Prof. Hegemann, a protein called LIPP was discovered in Cpn that plays a key role in the binding of the bacterium to a human cell. This protein is located on the surface of the bacterium. In earlier studies, the researchers in Düsseldorf found that a chlamydial infection with Cpn is increased substantially if LIPP is added artificially.

This finding was the start of the present study.

One of their findings was that the LIPP protein binds directly to the plasma membrane and traverses the membrane after binding. Several LIPP molecules then form a pore in the plasma membrane.

Next, however, the bound LIPP transports the PS molecule, normally located on the inner membrane leaflet, to the outside. LIPP was the first protein to be identified that transports a component of the inner membrane leaflet to the surface of the cell when added externally. Surprisingly, this does not trigger cell death. Instead, the cell remains viable. This applies both to cells confronted only with the LIPP proteins and to those also infected with Chlamydia.

The research team proposes that it is beneficial for the Chlamydium to transport the PS molecule of the host cell outward using its LIPP protein. Possibly, at the place where the PS with the LIPP protein is located on the membrane, the membrane is so deformed that the Chlamydium can enter the cell more easily. It is also possible that the PS molecules transported to the outer membrane leaflet of the human cell serve as a receptor for the bacterium.

Dr. Jan Galle, first author of the study, had this to say about the prospects arising from these findings: "The LIPP protein has now become a possible target to prevent a chlamydial infection. If we succeed in coming up with a drug that restricts the function of the LIPP protein, it may be possible to prevent the infection." Likewise it is now possible to examine whether other pathogens have a tool similar to Chlamydia that they use to enter human cells. "If this were the case, it could form the basis for an extensive strategy against pathogenic bacteria," emphasises Prof. Hegemann.

###

Funding by the Jürgen Manchot Foundation and the SFB 1208

The LIPP protein was discovered as part of the research carried out in the "MOI - Molecules of Infection" Graduate School funded by the Jürgen Manchot Foundation and was further characterised within the framework of a Manchot PhD scholarship. This resulted in the sub-project A5 in the DFG-funded special research area 1208 "Identity and Dynamics of Membrane Systems" at HHU, where the key discoveries around the LIPP function were then made.

Original publication

Galle JN, Fechtner T, Eierhoff T, Römer W, Hegemann JH, A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells, Nature Communications 2019 Oct 11;10(1):4644

DOI: 10.1038/s41467-019-12419-8

Media Contact

Dr. Arne Claussen
arne.claussen@hhu.de
49-021-181-10896

http://www.uni-duesseldorf.de/ 

Dr. Arne Claussen | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-12419-8

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
12.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>