Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cheetahs stay fit and healthy

24.03.2017

Cheetahs are categorised as vulnerable species, partly because they have been considered to be prone to diseases due to their supposed weak immune system. However, they are hardly ever sick in the wild. A research team from the German Leibniz Institute for Zoo and Wildlife Research (IZW) recently discovered that cheetahs have developed a very efficient innate “first line of defence” immunity to compensate potential deficiencies in other components of their immune system. The scientists have published their results in the open access journal “Scientific Reports” of the Nature Publishing Group.

Cheetahs have a relatively low genetic variability which means that, within a population, the individuals have a similar genetic makeup. This is also true for the major histocompatibility complex (MHC), a genome region that regulates the so-called “adaptive” immune system and is typically highly variable in animal species.


Sonja Heinrich taking blood samples and Jörg Melzheimer radio collaring an immobilised cheetah in Namibia.

Bettina Wachter/Leibniz-IZW

The adaptive immune system provides a rapid and specific defence against pathogens, if they have been encountered previously. A low MHC variability should therefore result in a weak adaptive immune system and thus a high vulnerability to diseases. This is often the case in species with low MHC variability, but there are some exceptions, the cheetah indeed being one of them.

“During our long-term study that begun in 2002, we investigated more than 300 free-ranging cheetahs that live on farmland in Namibia. We did not encounter any cheetah with symptoms of acute infections, nor did we detect lesions in the examined dead animals”, explains Bettina Wachter, head of the cheetah research project.

How can cheetahs cope so well with pathogens despite their supposedly weak adaptive immunity? The immune system is divided into three components:(1) the constitutive innate immune system, which provides a rapid first line of defence against intruders, (2) the induced innate immune system such as the local and systemic inflammatory response, which enhances recovery and decreases pathogen growth, and (3) the adaptive immune system.

“We decided to investigate all three components simultaneously, an approach that is rarely done although it is very promising. For every animal, a well-functioning immune system is associated with certain energetic costs. However, this does not imply that all immune components are equally strongly developed. If a species is not vulnerable to diseases, a good immune response must have evolved by strengthening other parts of the immune system”, says Gábor Czirják, wildlife immunologist at the Leibniz-IZW.

To compare the results with another species, the scientists included leopards in the study. “Leopards live in the same habitat as cheetahs in Namibia, but they have a high variability in their MHC. Thus, leopards should have a strong adaptive immune system and might not invest that much energy in the other parts of the immune system”, explains Wachter.

“We first needed to adapt six immunological tests from the toolbox of the wildlife immunology for the cheetah and leopard”, explains Sonja Heinrich, first author of the study. “We conducted these tests at the laboratory of the Leibniz IZW, thus needed to transport the samples we collected in Namibia all the way to Germany, keeping the cooling chain uninterrupted from the captured animal in the field to the Leibniz IZW”. The immunological tests confirmed that leopards have a stronger adaptive immune system than cheetahs, consistent with the differences in the MHC variability of both species. As expected, cheetahs had a stronger innate “first line of defense” immune system than leopards, thereby probably compensating their weak adaptive immune system.

The induced innate immune system reacts to pathogen intruders as well as to temporary stress. Therefore, the scientists also determined the concentration of the hormone cortisol, which activates catabolic processes and is increasingly released during stress. Although both species were exposed to the same capture and handling procedures leopards had significantly higher cortisol concentration in their blood than cheetahs, indicating that leopards reacted stronger to the examination methods. Thus, short-term stress might have stimulated the induced innate immune system, making it difficult to assess whether this immune part also helps to compensate the weak adaptive immune system of cheetahs, if the stress effect is not considered.

This is the first study in mammals demonstrating that different species spend varying efforts in the development of the different immune components. Cheetahs have apparently developed a way to successfully fight against pathogens despite their low genetic variability in their MHC. However, the future of this vulnerable species is highly uncertain because most of their habitat occurs in unprotected areas and they frequently come into conflicts with humans. Only if these conflicts can be mitigated, the cheetahs have a good chance to persist in the wild in the future.

Publication:
Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják GÁ, Wachter B (2017) Cheetah have a stronger constitutive innate immunity than leopards. Scientific Reports 7. www.nature.com/articles/srep44837.

Contact:
Leibniz Institute for Zoo and Wildlife Research(ZW)
in the Forschungsverbund Berlin e.V.

Dr. Bettina Wachter
wachter @izw-berlin.de
Tel.: + 49 - 30 - 51 68 - 518

Steven Seet
seet@izw-berlin.de
Unit Press & Communications
Tel.: + 49 - 30 - 51 68 - 125

Weitere Informationen:

http://www.nature.com/articles/srep44837

Steven Seet | Forschungsverbund Berlin e.V.
Further information:
http://www.fv-berlin.de

Further reports about: Cheetahs Forschungsverbund IZW diseases genetic variability immune system pathogens

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>